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Abstract—We consider a machine learning approach for beam
handover in mmWave 5G New Radio systems, in which User
Equipments (UEs) perform autonomous beam selection, condi-
tioned on a used Base Station (BS) beam. We develop a network-
centric approach for predicting beam Signal-to-Noise Ratio (SNR)
from Channel State Information (CSI) features measured at the
BS, which consists of two phases; offline and online. In the offline
training phase, we construct CSI features and dimensionality-
reduced Channel Charts (CC). We annotate the CCs with per-
beam SNRs for different combinations of a BS beam and the
corresponding best UE beam, and train models to predict SNR
from CSI features for different BS/UE beam combinations. In the
online phase, we predict SNRs of beam combinations not being
used at the moment. We develop a low complexity out-of-sample
algorithm for dimensionality reduction in the online phase. We
consider k-nearest neighbors, Gaussian process regression, and
neural network-based predictions. To evaluate the efficacy of the
proposed framework, we perform simulations for a street segment
with synthetically generated CSI. We investigate the complexity-
accuracy trade-off for different dimensionality reduction tech-
niques and different predictors. Our results reveal that nonlinear
dimensionality reduction of CSI features with neural network
prediction shows the best performance, and the performance of
the best CSI-based prediction method is comparable to prediction
based on using known physical location.

Index Terms—Beam-management, beam SNR prediction, com-
plexity analysis, CSI feature, dimensionality reduction techniques,
Neural Network, SNR prediction.

I. INTRODUCTION

ILLIMETER Wave (mmWave) communication with

large bandwidths and multiple antennas at the Base
Station (BS) and the User Equipment (UE) are key enablers
for high data rate in fifth generation (5G) and beyond mobile
systems. The high path loss at mmWave bands renders
beamforming a critical technology to overcome the severe
attenuation and to ensure connectivity [2], [3]. Using a large
number of antennas is thus a necessity in mmWave systems.
Due to the short wavelength at mmWave bands, large antenna
arrays that have small physical size can be implemented and
narrow beams with high gains can be formed. As both the BS
and the UE are capable of highly directional beamforming, a
beam management procedure is of paramount importance in
order to keep the beams aligned [3], [4].

User mobility in cellular networks is introduced by handover
procedures. Due to high path loss in mmWave systems, frequent
handover between nearby BSs as well as between beams of one
BS is likely. As a result, both intra-cell beam handovers [5],
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among beams of one BS, and inter-cell handovers have to be
considered. In 5G networks, autonomous UE beamforming
is adopted, where the UE selects a beam direction both for
uplink transmission and for downlink reception. The BS has
no control over the UE beam, and without an exhaustive search
of multiple BS-UE beam pairs, the consequences of change
of a BS beam would not be clear. As a result, the BS cannot
simply determine the Signal-to-Noise Ratio (SNR) of the best
BS beam by measuring the SNR of different BS beams from
a UE transmission on a single beam. Hence, the problem of
determining the SNR of the best BS-UE beam combination is
crucial for mobile 5G systems.

A. Beam Management

Beam management is a critical aspect of ensuring reliable
communication in mmWave systems. It comprises two key
procedures: initial access, which establishes a new connection
between the BS and UE through beam sweeping, and beam
tracking, which involves updating beam alignment for mobile
UEs. Conventional approaches for beam management include
exhaustive and partial beam sweeping [6]. In exhaustive search,
all possible beamforming directions within a predefined angular
range are considered, utilizing a predetermined codebook [3] .
This requires pilot transmissions from the BS to all potential
beamforming directions, resulting in significant overhead [7].

Spatial scanning for beam alignment in 5G new radio
involves an exhaustive search using narrow beams at both
the BS and UEs to cover the entire angular space, see [3].
Beam sweeping is accomplished through regular transmissions
of synchronization signal blocks, with a 20 ms interval and a
5 ms time window for measuring the reference signal of all
beams at the UE [8]. The BS transmits a reference signal over
different beams, and the UE measures the signal quality and
reports the measurement result and the ID of the best BS beam
to the BS. When the UE has multiple antennas, an additional
beam sweep over UE beams is required. Following the 5G
new radio approach, the UE determines the best UE beam
autonomously, and the corresponding best BS beam to the BS.

Advanced methods with low latency and reduced signaling
overhead need to be developed for scenarios with high mobility.
Various methods ranging from hierarchical search, extended
Kalman filtering, and Machine Learning (ML) approaches have
been investigated [9], [10]. To reduce the overhead of beam
sweeping, hierarchical codebook designs have been proposed,
which are based on a few low-resolution wide beams. Although
the total sweeping time can be reduced, such methods remain
time-consuming, as pilot transmissions to the low-resolution
beams are required and, once the wide beam is found, the
corresponding narrow beams are searched over. While such
approaches significantly reduce the beam-search complexity,



the performance of beam scanning is greatly affected by the
beamforming codebook. A hierarchical beam search may also
be affected by noise, which leads to a trade-off between beam-
search delay and accuracy [6].

B. Data Driven Beam Management

ML algorithms have shown great potential for handling
Radio Resource Management (RRM) problems [11]-[15].
Corresponding studies are ranging from channel prediction [11],
[12], where Channel State Information (CSI) is predicted
from past CSI to reduce pilot overhead, to directly predicting
the mmWave system beams [16]. Data-driven beamforming
in mmWave systems was investigated in [13], where beam
directions and beamwidths as well as transmit power are
simultaneously optimized. In [14], power allocation and uplink
beamformer prediction is performed by a Neural Network (NN),
utilizing channel reciprocity where the input feature is channel
matrix. In [15], a beam alignment method is proposed where
received signals are mapped to the index of the best beamformer
without using any prior knowledge. This aims to enhance
spectral efficiency compared to hierarchical beam search where
the input feature is obtained from channel coefficients between
the BS and the UE.

Useful information can be extracted from side information
(out-of-band, physical location, and sensor information) for
beam management purposes. In [17], a deep learning framework
was proposed where sub-6-GHz channel measurements are used
to train a NN for predicting blockages and the best beam in
the mmWave band. In [18], [19], ML models were proposed
to predict the optimal beam and cell using only the physical
location information. Physical location information is used
to minimize the beam search space, hence avoiding the high
overhead of real-time channel feedback and decreasing the
delay and consumed power. Neighbor-assisted beam search has
been proposed in [20], where both the location information
and the nearest neighbor beam information are used for fast
beam sweeping. Sensors on vehicles, such as LiDAR, can also
capture more information from the surrounding environment
and assist beam management [21].

Channel Charting (CC) [22], [23] is recent machine learning
framework for pseudo localization, where a Dimensionality Re-
duction (DR) technique is applied to the collections of massive
Multiple-Input Multiple-Output (MIMO) CSI at cellular BSs.
In CC, self-supervised ML techniques are used to create a radio
map of the cell which preserves the neighborhood relations of
UEs. Similar to the location-based beam management methods,
the channel chart can be used for beam management without
the need to know the physical location. In [24], we discussed
the use of CC for handover prediction where the SNR of a
UE from a neighboring BS is predicted based on the channel
chart locations.

C. Contribution

In this paper, we concentrate on beam SNR prediction
without any side information. We focus on handover between
beams of BSs in a mmWave network and predict beam SNRs
based on CSI features. In an offline phase, beam-specific CSI
features are extracted. We consider both dimensionality reduced

and raw features. These features are annotated with SNRs of
target beams, and SNR predictors are trained. In the online
phase, target beam SNRs are predicted, so that a handover
decision could be made. The contributions of our paper are
summarized as follows:

o We consider a network-centric supervised learning frame-
work for beam SNR prediction. Based on CSI measure-
ments at the BS towards a given beam, we predict the
SNR of using a different beam on the same BS or on a
different BS.

o We devise a CSI feature for predicting the SNR at other
beams assuming autonomous beamforming at the UE,
without information about the UE beam at the BS.

+ We remove small-scale fading from the beam prediction
problem by using covariance matrices as channel features
for SNR prediction. This choice leads to robust predictions,
and low spatial sampling density in the training phase.

o We analyze and evaluate the spatial consistency of the
CSI feature at the BS. This shows that this feature is not
robust against UE beamformer changes and that a per BS
beam feature is needed.

e We develop a low complexity Out-of-Sample (OoS)
algorithm that requires lower computations compared to
the conventional OoS algorithms to be used in the online
phase.

o« We analyze the complexity-accuracy trade-off of the
proposed schemes. K-nearest Neighbor (KNN), Gaussian
Process Regression (GPR), and NN predictors are consid-
ered, together with linear and non-linear dimensionality
reduction, as well as the raw features.

D. Notation

We adopt the following notation: matrices and vectors are set
in upper and lower boldface, respectively. ()7, (-)#, |-| denote
the transpose, the Hermitian, the absolute value, respectively.
Tr(-) indicates the trace of a matrix. E{-} denotes expectation
and ||-|| is the Frobenius norm. C is the set of complex
numbers and CV*M is the space of N x M matrices. X;; is
the element in the i*" row and j** column of matrix X.

E. Paper Outline

The rest of this paper is organized as follows. In Sec-
tion II, the system model, basic concepts and background
are introduced. In Section III, network operation for beam
SNR prediction is presented. In Section IV, OoS extension
framework is discussed. In Section VI, simulation settings
and numerical results are presented and discussed. Finally,
conclusions are drawn in Section VIIL.

II. SYSTEM MODEL AND BACKGROUND

We consider a multi-BS MIMO system, in which UEs
and BSs have multiple antennas following the 5G new radio
standard. Beamformers are used at the BS and UE. The UE
beamformer is autonomous so that the UE uses the best UE
beam towards a BS beam. We consider a time division duplex
system with B MIMO BSs, in which each BS is equipped with



an antenna array with M elements and each UE antenna array
has 7" elements. Hence, in order to find the best transmit/receive
beam pair following the 5G New Radio exhaustive search
principles [8], the BS has to transmit A beams and the UE
has to measure M x T beam pairs.

For simplicity, we assume that the number of radio frequency
chains is equal to the number of antenna elements at the BSs
and the UEs. We assume time division duplexing as it is the
preferred mode of operation in massive MIMO systems, since it
enables reciprocity between uplink and downlink channels [25].

A. Channel and Beam Models

We consider a massive MIMO system, with channel matrix
HY € CM*T between BS b and UE u over a subcarrier. The
channel matrix models the path loss as well as large-scale and
small-scale multipath fading effects. Let w,, € C™ denote
the beamforming vector at the BS with m = 1,..., M and
vy € CT denote the beamformer at the UE with t =1,...,7T.
Assuming a Uniform Linear Array (ULA) at both BS and UE,
a Discrete Fourier Transform (DFT)-based codebook W =

[W1,...,wpy] is used with beams
1 o (m—1) o (M- (m-1)17T
W = —— [1,(]2” L et } ()
vM
for m=1,..., M. A codebook containing a similar set of T’

DFT codewords is used at the UE. Without loss of generality,
the codebook can be generalized to a uniform planar array and
for the case with polarization, since the uniform planer arrays
allow 3D beamforming by adopting the beam in both vertical
and horizontal directions [26]. We assume that wideband beams
are used at both the BS and the UE, i.e., for all subcarriers,
the same beam is employed.

The received signal from UE u at beam m of BS b when
UE uses beam ¢ is given by

2)

where h¥ . = wHHYv, is the effective channel of UE u using
beam ¢ at BS b beam m, s represents the transmitted symbol
with E{|s|?} = 1 and n is additive white Gaussian noise.
The UE determines its best beam for transmitting towards /
receiving from beam m of BS b as:

u Hyye u
Yomt = Wi btvts +n= hbmts +n,

t(m) = argmax E{|hf,[*}, (3)
t

where the expectation is over frequency samples. This infor-

mation is known at the UE, however, the BS does not know

the UE’s best beam. Thus, if the BS’s best beam changes, the

UE’s best beam may change, and this needs to be considered
in the beam prediction framework.

The average received SNR at beam m of BS b from a

transmission of UE u using its best beam is given by
1

’yg;n = ?]E{ ‘hgmt‘%zf(m) }7 (4)

where o2 is the noise power and the expectation is taken over

frequency samples and temporal samples taken from the fast

fading process within a short time interval.

BS

Fig. 1: The BS beams and the corresponding best UE beams.

The effective channels from UE wu, transmitting towards BS b

beam m, measured by all BS antennas is
hy () = WHHE V(). (5)

The measurements are conducted at the BS and UE trans-
missions are coordinated towards BS beam m. The effective
channel for a transmission from a UE depends on which BS
beam the UE is receiving the signal from.

Fig. 1 shows a BS and a UE, both with an antenna array. The
channel between the BS and UE is created by two scattering
clusters, which are represented by white circles. For each
BS beam, illuminating a specific scattering cluster, there is a
corresponding best UE beam. For clarity, we show only two
beams. The UE beamformer is conditioned on the BS beam
that the transmission is received from, as expressed in (5). If
the UE autonomously selects its beamformer, the BS cannot
measure and find the best beam towards the UE from an uplink
transmission. If the BS were measuring the effective channel
at beam m when the UE uses ¢(m), it cannot determine what
the CSI would be if the UE was transmitting towards beam
W, With m’ # m. Therefore, from autonomous beamforming
of the UE, a beam mismatch problem arises when the best UE
beams Vi) and vy, towards two BS beams may not be
the same.

B. CSI Feature and Distances

The CSI feature that we consider is a channel covariance
feature. The covariance matrix is a large-scale feature that
changes slowly compared to channel vectors. It is easier to
estimate compared to the instantaneous CSI [27]. In [22], the
authors analyzed the changes in the channel covariance based
on scatterers in the radio environment and showed that it is a
large-scale fading effect. We develop a feature based on the
effective channel of UE towards BS b beam m as follows:

’gm = E{hgt(m) (h}:t(m))H} (6)



To compute the distance between two CSI features we use the
Collinearity Matrix Distance (CMD) [28], which, for any two
positive definite matrices R and R/, is computed as follows:

R R’ |

Rl IR,

1
demp(R,R') = 3 H @)

F
This measure is a normalized distance that reflects how similar
the two matrices are. The distance ranges from zero (fully
collinear, i.e., two matrices are scaled versions of each other)
and becomes one (absolutely non-collinear) when two matrices
are different to a large extent.

Another measure we use is the Log-Euclidean distance which
is computed as follows [29]:
Tr(AAT).

d,(R,R’) = || logR —logR’ ||, = (8)
N—————

A

The log indicates matrix logarithm. Generally, matrix log-
arithm of positive semidefinite matrix A is calculated by
performing a Singular Value Decomposition (SVD), i.e.,

A = UXVH 3 is a diagonal matrix and log(A) =
U diag ([logoy,...,logoy]) VE and o, > 0form’ =
1,..., M.

C. CC-Based on Linear Dimensionality Reduction

CC is the process of creating radio maps that preserve the
neighborhood information of UEs. The basic idea of CC is
that high dimensional CSI feature is heavily dependent on low-
dimensional UE location. A channel chart is a map of the radio
environment from collected CSI feature of massive MIMO BSs.
The constructed channel chart has a neighborhood-preserving
property so that nearby UEs in the physical domain are close
to each other on the channel chart.

It has been shown in [22] that high dimensional CSI
features depend heavily on the UE location which lies in low
dimensional space. Thus, by reducing the dimensionality of
the input feature, we can generate a mapping that reflects the
neighborhood relation of the UEs. The CSI feature x can be
extracted from the CSI covariance matrix which captures the
large-scale properties of the wireless channel. The CC can be
constructed for the CSI collected at a MIMO BS operating at
any radio frequency band, both microwave and mmWave bands
were considered [22], [23], [30]. In order to use off-the-shelf
ML software, the complex-valued feature needs to be converted
to a real-valued vector. We convert the CSI covariance matrix
R, to a vector consisting of real and imaginary values as:

x = [R{vec(R)}T, 3{vec(R)}7]", 9)

where R is a non-linearly transformed feature matrix. We shall
consider non-linear transforms conforming to the CMD and
Log-Euclidean distances, i.e., normalizing using the Frobenius
norm, or taking the logarithm of the covariance matrix before
vectorizing. Since the covariance matrix has a Hermitian
property, lower diagonal elements are eliminated due to
redundancy. Hence, the resulting CSI feature vector is an
M?-dimensional real-valued vector which would be referred as
high dimensional due to the large number of antenna elements.

Principal Component Analysis (PCA), factor analysis, linear
discriminant analysis, and Truncated SVD are examples of
linear DR methods. Here, we focus on PCA. As a baseline,
PCA is used as a simple method for DR [31]. In the extreme,
reduction to a channel chart of 2/3 dimensions can be done. For
RRM purposes, as opposed to localization, higher dimension
channel charts can be considered.

PCA selects the most discriminative principal components
so that the covariance of the low dimensional features is
maximized. For a given CSI feature x, the low dimensional
channel chart point z is obtained using an optimal weighting
matrix G as follows:

z=G'x. (10)

Here, G = [g1, ..., 84 consists of orthonormal basis with d
as the dimension of the low dimensional space.

To obtain the weighting matrix G, an optimization problem
aiming to maximize the variance of the transformed data is
formulated. For this purpose, we preprocess the set of CSI
features X = [xy,...,Xy] by normalizing each row of X
to have zero mean and call it X and compute the empirical
covariance matrix E = XX7 of the centered features. The
optimization problem associated with PCA is:

argmax Tr(GTEG), subject to GGT =1,  (11)
G

The eigenvalue decomposition is applied to = and principal
components are the top-d eigenvectors of =. By sorting
the eigenvalues of = in a descending order, the first d
eigenvectors form the transformation matrix G. By reducing
the dimensionality, a part of variability of the original high
dimensional data is lost. However, it is not significant because
only the small eigenvalues are discarded. The main assumption
in PCA is that the high dimensional data lies on a linear
embedding.

D. CC-Based on Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction (NLDR) methods are
more powerful at preserving the local neighborhood information
of the data compared to linear methods such as PCA. NLDR
methods aim to preserve the local structure of the data [32] in
addition to global structure of the data. However, the number
of selected neighbors has a crucial impact on the maintained
structure and needs to be carefully selected. To construct a
channel chart, a dissimilarity matrix D is first computed in
some NLDR techniques. D is a square and symmetric matrix
with pairwise CSI feature distances between the UEs. Then,
with the help of DR techniques, such as Laplacian Eigenmaps
(LE) [33] and t-Distributed Stochastic Neighbor Embedding
(t-SNE) [34], a low dimensional representation of CSI features
can be obtained by processing D.

Laplacian Eigenmaps is a graph-based NLDR technique
which is computationally efficient. First, a weighted graph
is constructed using the neighborhood information of the
dissimilarity matrix. Using the dissimilarity matrix, a weight
matrix W is formed in which if node i is in the k-nearest
neighborhood of node j, they are assumed to be connected.
The weight matrix can be constructed in two different ways.



In the first, the weight~f0r two connected nodes ¢ and j is
set to a constant, i.e., W;; = %, while for two unconnected
nodes ¢ and j is set to zero, i.e., V~Vij = 0. Alternatively, the
weight matrix can also be constructed by the heat kernel with
temperature parameter op. If the nodes ¢ and j are connected,
W, = exp(—]z—;")/(\/EiEj), where E; and E; are the
empirical expectations computed over k-nearest neighbors in
the data, ie., E; = Ey[exp(—D,;)], where = € k-nearest
neighbors of ¢, otherwise V~Vij = 0. For Laplacian Eigenmaps
DR we find a mapping which penalizes the neighbors in the
original data being far in the mapped space by formulating the
objective function as:

argmin > ||z —2;[3Ws;. (12)

i,

To avoid the trivial solution of all zeros, a constraint is added
and the optimization problem is written in the common form
as follows [33]:

argmin Tr(ZTLZ), subject to Z'SZ =1,. (13)
Z

Here, Z = [z],...,2}]" are the optimization variables (the
low dimension points / channel chart locations) with z; =
[z;(1),...,2;(d)]T, L is the graph Laplacian matrix, S is the
degree matrix, and I; is the identity matrix of order d. The
diagonal degree matrix S is then formed as S;; = Z;J:l Wij
and accordingly L = S — W. The closed form solution of (13)
can be obtained by solving a generalized Eigenvector problem
based on KKT conditions, the eigenvectors corresponding to
the second to d+1 smallest eigenvalues formulate the matrix Z.
The DR technique t-SNE is widely used for data visualization
and it has been shown to effectively convert high dimensional
data into lower dimensions (particularly 2D/3D). In t-SNE, local
structure of the data is favoured by weighting the pairwise
distances in high dimensional space using Gaussian distribu-
tion and using Student-t distribution in the low dimensional
space. Given two high dimensional points x; and x; and
the corresponding pairwise distance D;;, the joint probability
Dij = %Up”l is calculated, where the conditional probability
is defined as follows:
2

20‘? )

exp (

by = (14)

_D? °
Zk;ﬁi exp ( zgizk )

Here, p;; is the probability that point i is the neighbor
of point j and p;; = 0 by definition. The term o; is the
variance of Gaussian distribution which is centered on the high
dimensional point x;. The value for o; is determined based
on the quantity called Perplexity. Perplexity is essentially the
number of neighbors to the central point x; of the distribution
and it is an input parameter. An iterative algorithm is used to
find o, for a given value of the Perplexity [34].

The joint probability of the lower space embedding is defined
as

2\ _
(Al )
qij

= 1 (15)
St (14 12— #l})

Then, the Kullback-Leiber divergence between the joint distri-
butions p and g has to be minimized to obtain low dimensional
embeddings. Thus, the optimization problem to be solved is

given as:
. Di
arg min ZZpij log =2, (16)
Z PRl qij
The low dimensional points / channel chart locations are
iteratively updated so that the cost function is minimized using

gradient descent.

E. CC Evaluation

Three metrics are used for channel chart quality measure-
ment, namely Trustworthiness (TW), Continuity (CT), and
Kruskal Stress (KS). TW measures how well false neighbors
are avoided in the representation domain. CT indicates whether
physical domain neighbor relations are preserved in the
representation domain. KS shows to which extent the global
structure is maintained in the representation domain. All three
metrics are in the range [0, 1] with optimal value 1 for TW and
CT and O for KS. The neighborhood preservation metrics CT
and TW can be computed by considering a neighborhood of
K points, denoted as Vi (x;), around locations {x;}? , in the
original space, and the K -neighborhood denoted as V. (z;),
around the corresponding points {z;}%_, in the representation
space. The equations to compute the average values are given
as [35]:

CT(K):]‘*aZ Z (T<iaj)7K)7
i jEVK(xi)

JEVic(24)
TW(K)=1-a)_ > ('(i,j)—K),
i JEVK (%)

jEVI/((zi)

a7
(18)

where (i, j) is the rank of a point x; in terms of its distance
from a point x; in original space, r/(3, j) is the rank of a point
z; in terms of its distance from a point z; in representation
space and a = m is the normalization factor.
In [36], the TW and CT are evaluated using K equals the
number of neighbours, which is used to create the graph in
Laplacian Eigenmaps and t-SNE DR techniques. The idea to
find how many of these neighbours are preserved/affected after
applying the DR techniques. In [22], the TW and CT of the
CC are reported using K = 5% of the total points.

KS is computed by comparing pairwise distance/dissimilarity
matrix of the points in original space {x;}! ; with pairwise
distance matrix of points in representation space {z;}Y ; using
a distance scaling factor A as:

KS — \/Ei,j(Dij — AAG;5)?

19

where Aij = ||Z,L — Zj||2 and A = Zi,j Diinj/Zi,j D?j

F. Regression Methods

K Nearest Neighbors is the simplest ML algorithm for regres-
sion problems. To predict the mapping of a new sample using



KNN, first the distance between a new feature vector and all
other feature vectors in the training set is calculated. Then the k-
nearest neighbors are selected and the new sample’s mapping is
determined by averaging over the k-nearest neighbors’ mapping
value. This method can give a good approximation when the
sampling density is high and there is a linear relation between
mapping values, i.e., when the change of the predicted value
is linear in the nearby area.

The Gaussian processes model is a popular non-parametric
probabilistic ML framework for regression. Unfortunately, the
non-parametric nature of this method causes computational
problems for training over large data sets or high-dimensional
input features [37]. A Gaussian Process Regression model
makes predictions by incorporating prior knowledge and
provides uncertainty measure over predictions. We aim to
construct an approximation f(x) of the function f(x) given
a dataset @ = {(x;,vi),x; € R y; € R} . Assuming a
simple regression problem, y = f(x) + ¢ where f(x) is a zero
mean Gaussian process with corresponding covariance matrix,
K = {k(x;, Xi/)}gi':lv and e is additive i.i.d Gaussian noise
with variance 0.

Given the training data set Q and a new unseen data point X;
our task is to compute the posterior p(f;|x;, Q). The posterior
density is defined as [38]:

p(filxj, Q) ~ N(E[f;], Var[f;]),

E[f;] = k(x;) K, 'y, (20)
Var(f;] = k(xj,x;) — k(xj)TKy_lk(xj),
where  k(x;) = [k(x1,%5), ..., k(xu,x;)]7T,
y = [y1,...,yv)7, and K, = K + oZ1. The covariance

function reflects the prior information about the dataset. In the
absence of any prior knowledge usually, a squared exponential
covariance function is used
d 2
(i) = 57 exp (—Z w> .y
where (8 and [ are referred to as the hyperparameters which
are optimized by considering a log likelihood function [38].
Neural Networks provide a parametric ML framework for
regression problems. We consider multilayer feedforward NN,
consisting of an input layer, multiple hidden layers and an
output layer. The deep architecture enables the network to
extract appropriate information for regression. Hidden layers
are fully connected to the adjacent layer and each link has its
own weight and bias. Rectified Linear Unit (ReLU) activation
function is used in all layers except the last layer to provide
nonlinearity. The weights and biases (model parameters) are

determined by training the network to minimize a loss function.

The learning process consists of a forward and backward
propagation phase. In the forward phase, the input is propagated
across the hidden layers until the output layer. The difference
between the predicted output and the given output is minimized
using a loss function. In the back propagation phase, model
parameters will be updated. Levenberg-Marquardt (LM) [39]
and Adam [40] algorithms are used to minimize the loss
function. The Levenberg-Marquardt algorithm has been shown

to be efficient for moderate sized NNs and converges rapidly.
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However, the computational cost is higher as compared to
Adam algorithm.

III. BEAM-SNR PREDICTION

The best combination of UE and BS beams using (4) is
given by (m*,t*) = arg Max Y. Assuming autonomous UE
m

beamforming, where the UE selects the best UE beam towards
a BS beam, the BS best beam is:

m* = arg m"%X Ym t(m) (22)
A naive solution is based on beam sweep, where the BS
transmits reference signals from each of its beams m in
sequence, and the UE selects its best beam t(m) for each
m and reports the measured channel qualities to the BS.

Here, we develop an alternative method where the BS
predicts beam-SNRs from measured uplink CSI, and a number
of annotated channel charts. Before we dive into the beam
SNR prediction, we explain the necessity of using beam-based
CSI features.

A. Spatial Consistency at BS

We should highlight the effect that changing the UE direction
of transmission has on the effective channel measurements at
the BS. The UE measures the BS beams, selects its best beam
and transmits towards the BS. At each BS beam, we calculate
the covariance matrix of the UEs’ transmission. To gain insight,
we compare the dissimilarity of the covariance matrices using
different measures. We investigate the effect on the defined CSI
features, measured at the BS, if the UE changes its beamformer.

We consider a BS and a set of 3600 UEs in a street segment
of 10 m x10 m. The BS has a ULA with 32 antennas. The
UE has an 8-element ULA antenna. The channel coefficients
are generated considering 3GPP 38.901 Urban Macro cellular
Non-Line of Sight (UMa-NLOS) specification [41] where the
distance between the street and BS is 100 m, and the carrier
frequency is 28 GHz.
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For UE w transmitting towards beam w,,, we calculate the
dissimilarity between the best beam covariance matrix and
other beams for that UE. The dissimilarity of the transmission
towards beams m and m’ with covariance R, and R, is
called intra-location distance.

We contrast this to the dissimilarity arising from the UE
moving in space, keeping its best beam. The distance between
covariance matrix of the best beam of a UE and the covariance
matrix of the best beam of any of its 10 nearest neighbors in the
created sampling is called inter-location distance. The empirical
Cumulative Distribution Function (CDF)s of inter- and intra-
location distances for CMD and Log-Euclidean distance of
covariance matrices are shown in Fig. 2. The Log-Euclidean
distance is not a normalized measure. In order to obtain a
normalized measure with a similar range as CMD, as shown
in Figure. 2, the Log-Euclidean distance is first normalized
with the largest value in the data set and then exponentiated.

In the spatial neighborhood of a UE, we expect that the user’s
best beam covariance matrix will not change rapidly. Thus, if
we use the best beam for each location, we will not see a large
variation in the measured effective channel covariance matrix.
The inter-location curves in Fig. 2 confirm this. Changing
the UE beam for the same location, however, is similar to
transmitting towards a random direction. The figure shows that
changing the UE beam has a larger effect on feature distance
than moving in the environment.

This investigation implies that we cannot use a single
covariance matrix at the BS as a feature, such a feature would
not be robust against UE beamformer changes. For prediction,
we need to have a set of covariance matrices conditioned on
the transmission of the UE being towards a specific BS beam,
assuming the UE selects its best beam.

B. Problem Formulation

Our objective is to avoid BSs transmitting pilots on multiple
beams, and the related UE reporting, thereby reducing both
signaling overhead and the time spent on best beam pair search.

The problem addressed here thus is: assuming that the BS
knows that the UE uses a beam targeted towards BS beam m,
what are the SNRs of the different BS beams m' # m?

From this information, the best BS beam can be obtained,
and as a result, the best beam can be selected. Note that the BS
does not know the full channel matrix H}' nor which specific
beam ¢ = ¢(m) the UE uses. The BS only knows the effective
channel h}jt(m) of (5), from which it can directly compute the
SNR ~;, .. It has, however, no means for directly computing
v for m’ # m.

For this, we shall consider methods to learn to predict the
beam SNRs for m’ # m, using an ML framework. We devise
a CSI feature (fingerprint) towards a target BS beam assuming
that the UE uses an autonomous beam. The CSI feature can
be the raw feature covariance CSI or dimensionality reduced
feature (linear and non-linear DRs are considered). We train a
predictor to estimate the SNR of a UE at other beams given one
beam CSI. Our goal is to approximate an unknown mapping
function I':

N xe—uy, (23)

between CSI features and beam SNRs. The SNR prediction is
formulated as a regression problem, modeling the input-output
variables relationship.

C. Solution Approaches

We consider a network-centric beam based handover for data
collection, model training, and SNR prediction as illustrated
in Fig. 3. The beam SNR prediction framework is applicable
to any MIMO system, where both the UE and the BS use
beamformers. The basic idea is that for each beam, a set of
features is extracted from the available CSI and the features
are annotated with SNRs of neighboring beams of the current
BS or the neighboring BSs. We predict the SNR of a UE
at other beams given the extracted features, then based on
the SNR difference of the serving beam and other beams a
handover decision is made. The operation is divided into two
parts: offline and online phases.

During the offline phase, a data set of beam CSI features and
SNRs at other beams is collected for each beam. Dimensionality
reduction is performed on the CSI features, giving rise to a CC.
The CSI features and thus the samples constituting the CC are
annotated with information about SNRs of beams. The UEs at



the sample locations find their best beam for all BS beams and
report the corresponding SNRs to the BS. For this, we only
assume measurements at UEs required by 3GPP standards for
beam management, see e.g. [3].

Given annotated CSI feature of each beam, a SNR predictor
is trained to predict the SNR of UEs at other beams. The
channel feature x;, is defined as the CSI of UE v transmitting
towards beam m of BS b and it is annotated with g3’ ,, where
Ypo 18 the SNR information at beam m' of BS ¥'. This
information is collected for a set of sample UEs. Given the CSI
feature of a transmission towards bm, the SNR of a transmission
towards b'm’ is predicted. Here, the subscript "bm” indicates
the serving BS and beam and “&’m’” indicates the target beam
with different BS and or beam.

We extract a high dimensional CSI features in form of the
covariance matrix of the UE transmission towards a specific
beam. Inspired by fingerprinting approaches, we leverage
different predictors (i.e., KNN, GRP, and NN) so that the
SNR of the UE at other beams can be predicted.

In the online phase, the serving beam CSI feature is used
to predict the SNR at other beams. Raw CSI feature (i.e.,
the beam covariance matrix) is processed further either by
normalizing it or by taking a logarithm of the covariance
matrix. Then, depending on the DR method that is chosen,
two paths are available. Either the feature is used directly, or
adaptive sampling set reduction is applied. If PCA is chosen
as the DR method, the feature is directly mapped to a lower
dimension. Otherwise, by using an operation called adaptive
sampling set reduction, the most similar features from the
training set are chosen. Depending on the form of CSI feature
we use for prediction, the nearest neighbors on the training
set are found. If the KNN predictor is chosen, the SNR is
predicted by averaging over the nearest neighbors’ SNR value.
If the prediction is based on NLDR, after finding the nearest
neighbors, the CC location of the served UE is computed and
then fed to the SNR predictors for prediction. Fig. 4 shows
the details of the online phase.

In the online phase, the UE solely transmits sounding refer-
ence signals using a beam #(m) selected based on the current
BS beam m used to serve the UE. CSI measurements and
computations related to feature extraction and dimensionality
reduction are performed at the BS.

Our solution to beam SNR prediction is based on the served
beam CSI feature. We use different forms of the feature, either
the raw CSI feature vector or the dimensionality reduced (linear
or non-linear) version of the feature for SNR prediction. This
feature is processed and prepared during both offline and online
phases.

IV. OUT-OF-SAMPLE EXTENSION

In a realistic scenario, after training the SNR predictors, we
need to predict the probable target beams for the handover of a
new UE that establishes a connection with one beam during the
online phase. Other than the raw feature-based SNR prediction
model, an OoS extension is needed to locate the new UE in
the feature space for DR method.

Out-of-Sample Extension
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NLDR/FP | |

4

Feature Processing

Adaptive Sampling Set PCA
Reduction

NLDR

Dimensionality

Reduction
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v
SNR Regression
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M
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Fig. 4: The online phase: CSI feature of the serving beam is processed
and fed to the predictor.

A. Full Dataset Out-of-Sample Extension

Out-of-sample extension is essentially computationally com-
plex and expensive. This is due to the computation of
dissimilarity of the OoS point with respect to all other training
points. As long as the training dataset is of a small size, the
computation burden is tolerable. However, when the size of
the training dataset increases it becomes problematic. Even
though several OoS extension algorithms have been proposed,
they are computationally complex and time-consuming [42].

For PCA, a parametric OoS exists.

For Laplacian Eigenmaps, however, a non-parametric approx-
imation method is used. The OoS is framed as an optimization
of the objective which finds the normalized kernel function
that minimizes the mean square error. To obtain the embedding
for a new point, the normalized kernel matrix W is used as
weights. Using the obtained mappings for the original dataset
points z; for ¢ = 1,...,U, the embedding for the new OoS
point, Zoos, , 1S computed as:

U
200s1s = » Wiz, J¢{1,.U}, (24
=1

where W,] is the weight of the j*"' QoS point with respect to
i*? point in the original dataset. We note that the QoS location
will only be affected by the weight of k-nearest points in the
data set as the weights of other points are set to zero.

However, t-SNE technique has limitations on OoS as it is a
non parametric DR. The problem of t-SNE is that with every
new data point, a new mapping is obtained, and extending the
mapping to new points is difficult.

A non-parametric out-of-sample extension that can be applied
to all nonlinear dimensionality reduction techniques is based



on finding the nearest neighbor of the new point in the high-
dimensional representation and computing the linear mapping
from the nearest neighbor to its corresponding low-dimensional
representation. The low-dimensional representation of the new
data point is found by applying the same linear mapping to this
data point. This approach entails the computational complexity
of finding the nearest neighbors in the high space.

Except PCA, the main step in the OoS extension algorithms
is that for the new data point, dissimilarity to all training points
is needed to be calculated. With a large training dataset, both
memory and computation issues arise.

Given dimensionality reduced input CSI features, we com-
pute the location of the new point on the embedding during
the online phase, which is fed to the SNR predictor. With full
knowledge of dissimilarity matrix between the new point and
the training dataset, we find the k-nearest points to the new
point. Then, a weighted average of the the k-nearest locations
is used to approximate the OoS location as:

k
20os = ) ziYij, (25
i=1
where the exponential weighting for i*? neighbor is:
-D;:
Q, = 2Dy (26)

> exp(—Dy;)’
and D;; is the dissimilarity of the new point to the it" point in

the k-nearest neighbors and z; is the location of corresponding
training point.

B. Adaptive Sample Set Reduction

Computing the dissimilarity between a new point to all
training points is the most computationally heavy part for a
large dataset'. We propose a heuristic method where fewer
dissimilarity computations are used. We refer to this approach
as hierarchical method, we find the OoS point through an
iterative process by zooming into the neighbourhood of the
nearest neighbors found in the previous step. The goal is
to find an estimation of the OoS point with fewer number
of dissimilarity calculations. The process is summarized in
Algorithm 1.

First, L training points are chosen as landmarks. In order
to uniformly choose the landmark points, a simple K-means
clustering algorithm is employed to find L; clusters in the
entire area.

We choose the closest point to the cluster center and assign
it as a landmark. Then, the dissimilarity of the new point to
landmarks is calculated and the S; closest ones are chosen.
Here, an iterative process starts and the step index i is set to 1.
At the i*? step, a region between the S; closest landmarks is
formed. The region is formed based on the center of mass rule
where the center is calculated as the average of .S; landmark
location in each dimension and the radius is calculated as the
average distance of the center to S; landmarks. Let |S;| be
the number of points are in the region. Among these points,
min{L;+1 —.5;, |S;|} are picked as the second stage landmarks

I'The computational complexity is discussed in detail in Section V.

Algorithm 1 Adaptive Sample Set Reduction

1: Given: The channel covariance matrices f{u and z,, for
u=1,...,U, covariance of the new point R i, parameters
L;,S;,i=1,..., Inax.

2: Initialize: i < 1, a set S of candidates (pre-selected) from

R..

L <« Select L; landmark from S.

L — compute dissimilarity to Rj.

Select the .S; closest landmarks.

while i < I ., AND S # () do

Construct a region from .S; landmarks.
Find a set of new landmarks & in the region.
S < Select min(L;41 — S, |S]|) sample points from

S at random.

10: Compute the dissimilarities of £U S to R;.

R I A A

11: Select S;41 closest landmarks.
12: i1+ 1.
13: end while
14: Output: The set of S; closest landmarks.
15: Compute: zgo,g using (295).
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Fig. 5: Hierarchical OoS where the first set of landmarks are shown by
the black circles, second step landmarks are shown by green asterisks
and final step landmarks are shown by red crosses.

and 5,11 closest points are chosen. The iteration ends here
and with new S;;; samples a new region is formed. The
convergence criterion is maximum number of steps or |S;| = 0.
If any of them is met, the OoS is computed with the last closest
landmark points as in (25).

Fig. 5 shows an example of the hierarchical OoS approach.
In the first step, a set of landmarks is chosen and the closest
ones to the new OoS point are chosen (we assumed S; = 5
for all iterations). Then, in the next step, the region between
the 5-nearest neighbors is constructed and new landmarks are
sampled from this region. Here, after three steps the algorithm
converges, and as can be seen in the last two steps the difference
between the chosen landmarks is small. The zoomed area shows
the five closest landmarks in each step. Now, the OoS point
location is computed as an average of the last step nearest
neighbors and is shown by the light blue square.



V. COMPLEXITY ANALYSIS

We now examine the computation complexity of the online
phase in terms of real multiplication, which includes the
complexity of the OoS extension function and the predictors
(i.e., KNN, NN, and GPR). The number of additions is
neglected because in a typical algorithm for multiplying
two n digit numbers, the computational complexity is O(n?),
whereas adding the same numbers has a complexity of O(n).
Multiplication is, therefore, the most time-consuming part of the
implementation procedure. For comparison of the computation
complexity of different procedures, we consider float values
of 16 digits. The training phase complexity, which is carried
out offline, is not considered.

Here, we point out the complexity of some elementary
functions that are used in the online phase. According to [43],
the complexity of elementary functions differs from the
complexity of multiplication only by some multiplicative
constants. Assuming multiplication complexity as a constant
time as O(1), the complexity of division is O(Maiy). Analysis
shows that My;, = 4. For the exp(-) and log(-) functions,
the complexity is the same, O(Meyp) = O(Miog) Where
the multiplicative constant M., = 52 and for the square
root function the complexity is O(Myq) with the constant
My = 4

A. Out-of-Sample Complexity

The main complexity of OoS extension function is due
to dissimilarity computation. For a new UE, dissimilarity is
computed via either (7) or (8). For (7), the normalized feature re-
quires O(M?) multiplications to be calculated. For (8), the CSI
feature is processed, and then the distance is computed where
for the matrix log processing, a Singular Value Decomposition
(SVD) is needed. The SVD complexity is O(M?) considering
M x M covariance matrix. Secondly, for all training points,
the Tr(.) function is needed to be computed. For the trace
function, we need to compute only the diagonal elements of
the matrix. Each diagonal element is obtained by M complex
multiplications. Thus, 4?2 real multiplications are needed.

Considering the OoS algorithm, the complexity of computing
the OoS point in the last step of algorithm as in (25) compared
to the Singular Value Decomposition (SVD) computation
is negligible. Also, the complexity of partial sorting in the
algorithm is not considered since its complexity is comparable
to a set of additions. As a result the OoS extension complexity,
using Log-Euclidean feature is

Imax
Coos = O(M® +4M* Y " L;).
i=1
The complexity of OoS for PCA method can be divided into
calculating the logarithm of the covariance feature and then
using (10), a matrix multiplication for a d dimensional final
feature as

27)

Cpca = O(M? + dM?). (28)

B. Predictor Complexity

The computation complexity of KNN method, is mainly due
to feature dissimilarity computation. We consider KNN when

TABLE I: Computational Complexity

Operation Complexity

0oS PCA O(M3 + dM?)

0oS O(M3 +4M? Yy ;28 L)
K-NN o(Ud)

GPR O(U(Nin + Mexp +2) +U?)
NN O(NinNp, + 2N2 + N No)

CSI Fingerprint (CSI FP) and PCA features are used. If CSI
fingerprint features are used the complexity of KNN method is
derived from (27) since the dissimilarity to all training points
is needed to be calculated (L; = U). If PCA features are
used, after the OoS operation, Euclidean distance between the
dimensionality reduced training points and the OoS point is
calculated. The added complexity from KNN method is O(Ud)
which is for calculating the dissimilarity of the OoS point to the
dimensionality reduced training points. The total complexity of
beam SNR prediction is the OoS and regression complexities.

The computation complexity of a GPR model is mainly
a function of the number of training points, on the other
hand. The main complexity arises from kernel computations.
Computation of kernel function between a new point and
the training set points is the major computation burden in
GPR model. Considering Gaussian covariance kernel function,
computation of kernel function for a new point needs Ciem
multiplications as

Cremn = O(Nin + Mexp + 2)7 (29)

where Vi, is the number of input features. The complete GPR
model takes Cppr multiplications as

C(GPR = O(Uckern + U2) (30)

When N, is small compared to the number of training points
U, the kernel function computation complexity is negligible.
However, when V;,, increases, a significant computational load
is incurred by the kernel computation. According to [37],
distance calculations between points for the kernel function
will be problematic for high-dimensional input features. This
is due to the fact that the points are relatively farther away in
high dimensions, hence it becomes harder to learn the mapping
between input and output pairs.

Computational complexity associated with NN is mainly a
function of the number of neurons and layers. Considering, a
NN with three dense layers and each layer with NV, neurons,
the resulting model requires Cxy multiplications as

Cxx = O(NinMV;, + 2N + MoV, (31)

where Ny, is the number of input layer features and /N, is the
number of elements in the output layer.

Table I summarizes the computational complexity of different
OoS and predictors.

VI. SIMULATIONS

To evaluate the performance of the SNR prediction and OoS
extension methods, we conducted simulations using synthetic
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Fig. 6: (a) The physical location annotated with the SNR of one beam. (b)-(d) The CC feature (t-SNE, LE and PCA of one beam annotated

with the SNR of another beam).

TABLE II: Simulation Parameters

Parameter Value Parameter Value

Center Freq. 28 GHz Subcarriers 256

Scenario 3GPP 38.901  Subcarrier BW 240 KHz
UMa-NLOS

BS Array 32 ULA UE Array 8 ULA

BS Height 25 m UE Height 1.5m

TABLE III: Average Performance Measures of Different Features

\ R/|R| g \ log(R)
Scheme | TW CT  KS | TW CT KS
CSI FP 089 094 050 | 099 099 028
PCA (2D) | 0.81 091 051 | 092 096 029
PCA (30D) | 0.90 093 045 | 097 098 0.28
LE (2D) 092 095 041 | 099 099 0.18
t-SNE 2D) | 093 096 033 | 099 099 0.16

data generated by the Quasi Deterministic Radio Channel
Generator (QuaDRiGa) simulator [44]. In order to model a
realistic environment, the adjustable parameters of the simulator
are based on the 3GPP channel model [41]. The simulation
is carried out in a street segment of 10 mx 10 m, where
2800 UEs are scattered randomly. The layout includes two BSs

located at xy-coordinate [0, 0] m and [210, 50]m, respectively.

We consider a 3D UMa-NLOS scenario that takes into account
both large-scale and small-scale effects, including multi-path
fading. The standard values for delay spread, AoA and AoD
distributions are from [41]. The simulation parameters used in
our study are summarized in Table II.

A. Annotated Beam CC

After channel generation, for calculating the covariance
matrix of a UE moving with speed of 50 Km/h, we generate
100 small scale fading temporal samples within a 100 ms time
frame. The CSI covariance features of each beam are created
according to (6). Sample covariances are created by averaging
over frequency and spatial samples. The Log-Euclidean distance
and CMD are used to calculate the dissimilarity of UE CSI at
each beam. Linear and non-linear dimensionality reduced CSI
features of each beam are created with different dimensions.

We evaluate the quality both of the raw CSI covariance
features, referred to as CSI fingerprints, and the dimensionally
reduced features resulting from CC. To benchmark the capa-
bility of the CSI features to capture characteristics of ground
truth physical locations, we compute the CT, TW, and KS
performance measures.

Table III shows the corresponding values of performance
measures for CMD (7) and Log-Euclidean (8) distance. Specif-
ically, covariance features are processed to the form of the
column headers, corresponding to the two different metrics of
interest, after which feature dissimilarity of UEs is computed
using the Frobenius norm.

We set 5% of total points as the number of neighbors for
calculating the performance measures, and the performance
values are averaged values. For the data set used this represents
the neighbors within a circular disc of radius ~1.25 m based
on the physical locations, on average. With the chosen measure
we are thus evaluating the neighborhood preservation within
this disc.

The results summarized in the table show first that linear
dimensionality reduction may destroy some of the underlying
ground truth spatial geometry information hidden in the CSI
FPs. E.g. PCA to two dimensions performs worse than the CSI
FPs in terms of all metrics, for both dissimilarities considered.
However, non-linear dimensionality reduction, exemplified here
by LE and t-SNE, is able to extract more information about
spatial geometry from the FPs than using them directly. This
is the principle underlying the efficacy of CC [22].

Furthermore, the table shows that log(R.) based dissimilarity
outperforms CMD, i.e., the normalized CSI feature dissimilarity.
In particular, global geometry is better preserved by log(R)
dissimilarity. Therefore, we focus on Log-Euclidean distance
from now on. The performance of non-linear DR techniques
(i.e., Laplacian Eigenmaps and t-SNE) are better compared to
PCA. For Laplacian Eigenmaps and t-SNE, the neighbourhood
preservation is better than for PCA. Also, the global structure
of UEs is relatively well maintained.

Note that the construction of the CC, producing the results
above, is fully self-supervised, no information about the spatial
geometry is needed.

Continuing with the offline phase of Section III-C, we
annotate the constructed CSI features / channel charts with
the SNR values of all BS beams, measured by the UEs at the
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Fig. 7: Average RMSE of GPR and NN predictors as a function of
dimensionality reduced beam CSI feature using PCA.

sample locations. For these measurements, each sample UE
autonomously selects its best beam towards each of the BS
beams. It should be noted that in the considered street segment,
15 beams from 2 BSs are dominant. The annotated physical
location and CCs are depicted in Fig. 6. The left part of the
figure shows the physical location of UEs annotated with SNR
of one beam. These SNR values are shown at the channel chart
locations of another beam in the right part of the figure.

B. Beam SNR Prediction

The beam SNR mapping functions using KNN, GPR, and
NN predictors are created. The mean squared error loss function
is used in both the NN and the GPR. The NN comprise of three
hidden layers with Nj, = 30 neurons in each layer and ReLu
activation function. The Root Mean Squared Error (RMSE) is
used as the performance measure for the SNR predictors in
dB scale. The data set is divided into 3 sets, 1200 for training,
1200 for testing and 400 for validation.

The input dimension for the predictor is a concatenated
vector of the current beam SNR and dimensionaly reduced
feature vector. As for the Laplacian Eigenmaps and t-SNE
based predictions, 2D to 10D CC dimensions are used. For
PCA, 2D - 30D are used. Raw CSI fingerprint with 1024
dimensions is used. The OoS point is obtained by either
computing the dissimilarity to all points in the dataset called full

dissimilarity or to fewer points using the hierarchical method.

The hierarchical OoS is assumed to be performed in 3 steps
with Ly = 100, Ly = 45, and L3 = 45. In each step S; = 5
neighbors for ¢ = 1,2, 3 are considered. Thus, we have at most
180 dissimilarity calculations which compared to 1200 required
calculations in the full dissimilarity OoS approach, is relatively
small. For PCA the OoS is obtained directly from (10).

In the NN predictors, the output layer has 14 dimensions.

Thus for each input beam, the SNR at other beams can
be predicted concurrently. However, with GPR and KNN

predictors, a separate predictor is trained for each pair of beams.
The reported RMSE is averaged over all beams’ predicted SNR.

Fig. 7 depicts the average RMSE of target beam SNR
prediction as a function of dimensionality reduced beam
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Fig. 8: Average RMSE of different predictors as function of beam
CC dimension for t-SNE. The CC dimension is limited to 15, since
most of the RMSE gain is achieved within five dimensions.

features using PCA. Increasing the feature dimension is
beneficial for more accurate predictions, but at some point
(around 30 dimensions) no more gain could be obtained.
Results for both R/||R|| and log(R) features show a similar
trend, whereas for the log(R) feature superior performance is
obtained. That is the reason for choosing log(R) as the feature
vector for the rest of the simulations.

Fig. 8 shows the RMSE performance result for NN and
GPR predictors based on t-SNE DR. Various CC dimensions
are considered and as expected, increasing the dimension of
input CC improves the SNR prediction performance. GPR
predictor has shown better performance than NN predictors
with all features. There is 0.04 dB gap between the proposed
hierarchical OoS and the full dissimilarity OoS. Simulation
results show that most of the gain comes from increasing CC
dimension up to 15, and beyond this the gain is marginal.
Based on this, we limit the CC dimension to 15.

The beam SNR prediction results for different predictors,
various forms of CSI feature, and two OoS methods are
summarized in Table IV. For Laplacian Eigenmaps and t-
SNE CCs, RMSE values corresponding to OoS using full
dissimilarity and the hierarchical method are reported. In
the hierarchical approach, dissimilarity computations to 15%
of the training set is used. By comparing the results of
full dissimilarity OoS and proposed hierarchical OoS, small
degradation of ~ 10% in prediction performance is observed.
CSI features based on t-SNE, outperform other DR-based
inputs because the t-SNE CC has preserved the neighborhood
information very well.

High dimensional input is a critical challenge for GPR [37],
and the learning task becomes difficult as the number of input
variables impacts the search space. Therefore we eliminate the
prediction result of this scheme for CSI fingerprint. A different
NN consisting of 5 hidden layers and 300 neurons in each layer
is considered for the SNR prediction using CSI fingerprint. In
this network, Adam optimizer is used for training the model
parameters. Since we are using the CSI fingerprint feature, no
OoS is needed during the online phase and this approach can



TABLE 1V: Performance of Different Predictors and Beam CSI
Features

\ GPR \ NN | KNN
Feature | Full  Hier. | Full Hier. | Full Hier.
LE 046 050 | 047 050
t-SNE 043 047 | 044 048
CSI FP 0.57 0.50  0.67
PCA 2D 1.19 1.01 1.33
PCA 30D 0.50 0.53 0.56
GNSS (15 cm) | 0.42 0.42 0.46
GNSS (2 m) 1.44 1.46 1.8
TABLE V: Complexity (M)

Regression 2D 30D 1024D

NN (LM), N,=30 0.002  0.003

NN (Adam), N =100 0.17

NN (Adam), Np=300 0.70

GPR 21.00 21.56

KNN 0.002  0.036

OoS

NLDR / FP, Full 491

NLDR / FP, Hier. 0.77

PCA 0.035  0.063

be called end-to-end learning. In the case of KNN predictor, if
OoS with full dissimilarity knowledge is chosen, comparable
performance is obtained. However, the hierarchical OoS can
not provide the same performance.

For PCA features, the OoS extension has a closed form
expression (10). We have reported the RMSE of beam SNR
prediction for the case of 2D and 30D. Comparing the result
of PCA with non-linear DR techniques, we see that it has the
worst RMSE performance.

We predict the beam SNR based on the physical location
as a benchmark. For the physical location-based model, in the
offline phase, the network has to collect data (i.e., physical
locations and SNR of all BS-UE beam pairs) and then train the
ML model, so we are examining all beam pairs and measuring
the SNR at all BS-UE beam pairs. We annotate the physical
location map, with the SNR of different beams and train the
predictors.

With 15 cm accuracy of Global Navigation Satellite Sys-
tem (GNSS) [45], ideal true location-based prediction has a
comparable RMSE to the CC-based prediction. Predictions for
higher values of inaccuracy (i.e, 2 m for a typical system) is
considered. Results show inaccurate SNR prediction when the
input location is not precisely known.

C. Computational Complexity

We compare the computational complexity of different
predictors and OoS methods. The total complexity of the
beam SNR prediction is the complexity of OoS operation
and the beam SNR predictor. The corresponding complexities
are shown in Table V.

The complexity of different predictors can be calculated
according to (27)-(30) at the online phase. Table V shows

the complexity of different regression and OoS methods,
where the complexity is reported in number of multiplications
in million (M). Regression complexity of the NN predictor
(with Levenberg-Marquardt optimizer) for a network with
Nip, = 2,30 and three hidden layers for dimensionality reduced
features is computed. Also, for the network with N, = 1024
and 5 hidden layers (i.e., the NN with Adam optimizer), which
is applied to the CSI fingerprint, the equivalent number of
multiplications are 0.17 M to 0.7 M for the network with 100
and 300 neurons in hidden layers, respectively.

On the other hand, the GPR predictor itself requires 1.5 M
multiplications for predicting one target beam SNR which is
larger compared to NN-based prediction. For a complete beam
SNR prediction, 14 GPR predictors are needed, and hence
21 M multiplications for 2D input and 21.56 M for 30D input
vector are needed. When using the KNN predictor, the main
complexity comes from dissimilarity calculation. Thus for CSI
fingerprint-based prediction, the complexity of KNN can be
omitted, since in the OoS operation, nearest neighbors are
found and then can be used. In the case of PCA, after the OoS
operation as discussed in Section V-A, the Euclidean distances
between the OoS point and training set points have to be
calculated. The Euclidean distance calculation takes 0.002 M
and 0.036 M multiplications for 2D and 30D input features,
respectively. It should be noted that for PCA, the complexity
of Log-Euclidean feature generation (i.e, 0.032 M) is added.

The full dissimilarity OoS (NLDR/ fingerprint, Full) com-
plexity is obtained by (27) when all 1200 training points
are used as landmarks (i.e, L1 = U,Ly = L3z = 0). The
hierarchical OoS (NLDR/ fingerprint, Hier.) is assumed to use
180 dissimilarity calculations within 3 steps. As mentioned
earlier, PCA has low complexity and the corresponding values
for computing 2D and 30D features are listed in the PCA row.

The complexity-accuracy trade-off of all OoS methods and
predictors in terms of millions of multiplication and RMSE
is illustrated in Fig. 9. On the rightmost part, we have the
GPR predictor for different DR input features. Even though the
best RMSE is obtained by GPR predictor, the complexity
is the highest. Using non-linear DR and NN predictors
gives the best performance in terms of both complexity and
accuracy. The first two points (from the left) on the t-SNE and
Laplacian Eigenmaps curves correspond to NN predictor with
hierarchical and full dissimilarity OoS. PCA has shown the
lowest complexity. However, its performance is worse compared
to non-linear DR techniques. The points on the PCA curve
are showing the performance of 2D, 3D, and 30D using NN
predictor and the last one corresponds to GPR with 30D input.
The first 3 points on CSI fingerprint curve show different NN
structures as predictors which have a low complexity but higher
RMSE value. Since Levenberg-Marquardt algorithm is not able
to process a large input vector feature and is efficient for
moderate sized NN, for the raw CSI fingerprint, we have used
Adam optimizer in training. For this raw feature, a deep NN
with 5 layers has been used with 100, 200, and 300 neurons in
each layer. By increasing the complexity of the NN, the RMSE
is reduced but it is still higher than any CC-based prediction.
The last point on the CSI fingerprint curve is full dissimilarity
OoS using KNN and shows a comparable performance.



b —=—tSNE | |
—»—LE
PCA
—#— CSIFP
09 J
08 J
o
)
®
Qo7 1
o
06 ]
05 ]
04 : : :
1072 107" 10° 10’ 102

Complexity (M)

Fig. 9: Complexity vs. RMSE accuracy trade-off for different beam
SNR prediction algorithms and beam CSI features. The average
accuracy is in terms of RMSE and the complexity is in million
of multiplication operation.

For the current scenario, the maximum ML inference
complexity is for GPR, requiring 21 M multiplications. Since
all the computation is performed on the BS side, this is in
scope of contemporary BS hardware. As the computational
capability of modern commercial processors is measured in
Giga Floating Point Operations per Second (GFLOPS), the
inference time is small even for the most complex inference
method. For instance, a commercial FPGA board (Xilinx Alveo
U50) has been shown to provide 200 GFLOPS, for a general-
purpose ML accelerator [46]. The 21 M operations required
by GPR would then take ~ 1—10 ms; the considered ML method
can be used in real time.

VII. CONCLUSIONS

In this paper, we have considered SNR prediction for
combinations of BS and UE beams in mmWave systems using
a BS beam-specific CSI feature. We have devised a network
centric beam handover mechanism in which all processing
is performed at the BS. During the offline phase, beam CSI
features and SNRs are collected and SNR predictors are trained
based on the annotated CSI features. In the online phase,
target beam’s SNR of the new UE is predicted from the
received CSI at the BS and serving beam SNR. A heuristic,
less computationally complex OoS algorithm has been devised.
K-nearest neighbors, Gaussian process regression and neural
networks have been used for predicting the SNR mapping
function. The SNR RMSE in dB has been used as the
performance metric. Results have shown excellent beam SNR
prediction accuracy using GPR, and NN. The performance loss
of CC-based beam SNR prediction, as compared to prediction
based on physical location, is negligible if the physical location
is accurately known. When it comes to CC-dimensionality, there
is little gain from using a CC with more than 3 dimensions. We
have analyzed the complexity-accuracy trade-off for different
predictors and DR methods. The Pareto front is given by
PCA for different dimensions with NN predictor, and ¢-SNE
dimensional reduction, with different OoS mechanisms and

predictors. The DR-based methods outperform vanilla CSI
fingerprinting with a wide margin in the complexity-accuracy
domain. Simulation results demonstrate that the proposed CC-
assisted approach can significantly reduce complexity and
accurately enable beam management.
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