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ABSTRACT

We leverage standards-compliant beam training measurements
from commercial-of-the-shelf (COTS) 802.11ad/ay devices for
localization of a moving object. Two technical challenges need to be
addressed: (1) the beam training measurements are intermittent due
to beam scanning overhead control and contention-based channel-
time allocation, and (2) how to exploit underlying object dynamics
to assist the localization. To this end, we formulate the trajectory
estimation as a sequence regression problem. We propose a dual-
decoder neural dynamic learning framework to simultaneously
reconstruct Wi-Fi beam training measurements at irregular time
instances and learn the unknown dynamics over the latent space in
a continuous-time fashion by enforcing strong supervision at both
the coordinate and measurement levels. The proposed method was
evaluated on an in-house mmWave Wi-Fi dataset and compared with
a range of baseline methods, including traditional machine learning
methods and recurrent neural networks.

Index Terms— WLAN sensing, Wi-Fi, 802.11ad/ay, localization,
fingerprinting, beam training, dynamic learning.

1. INTRODUCTION

Wi-Fi fingerprinting is one of the popular approaches for indoor
localization, driven by open firmware releases, WLAN domain
knowledge for waveform calibration and preprocessing, as well as
recent advances in deep learning-based feature extraction [1–3].

With commercial-of-the-shelf (COTS) Wi-Fi devices, one can
fingerprint the following Wi-Fi measurements:

• coarse-grained received signal strength indicator (RSSI) [4];

• mid-grained beam training measurements at 60 GHz [5–11]

• fine-grained channel state information (CSI) at sub-7 GHz
[12–15];

Refer to [10, Section II] for detailed discussions on all three types
of Wi-Fi channel measurements. Traditional machine learning
and advanced deep learning methods have been applied to all
Wi-Fi fingerprinted measurements [16–21]. For instance, DeepFi
exploits 90 CSI amplitudes from all the subcarriers at three antennas
for feature extraction using an autoencoder architecture [12, 22].
More recently, a pretrained fusion network between the CSI at
sub-7 GHz and the beam training measurements at 60 GHz was
proposed for both localization and device-free sensing tasks [10].
Nevertheless, the majority of these approaches are frame-based; that
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Fig. 1. Beam training measurements (Beam SNRs) during the
mandatory Sector Level Sweep (SLS) in 802.11ad/ay standards.

is, the coordinate is inferred from the current Wi-Fi frame, without
integration of past measurements or previous trajectory history.

On the other hand, sequence-based approaches take consecutive
Wi-Fi frames as the input, and state estimation (e.g, Kalman filter-
like approaches [23, 24]) and recurrent neural networks (e.g., GRU
and LSTM [25]) can be applied for trajectory estimation with the
RSSI [21] and CSI [26] at sub-7 GHz. However, the sequence-based
formulation has NOT been applied to mmWave Wi-Fi localization
due to the intermittent nature of the mid-grained beam measurement:

1) Low beam training rate: In Fig. 1, during the beacon header
interval (BHI), mmWave Wi-Fi of 802.11ad/ay uses directional
beacons for sector level sweep (SLS) to train both initiator/responder
beampatterns for subsequent data transmission. This mandatory
beam training results in significant overhead to the Wi-Fi network
and it is desired to limit the number of directional beampatterns
within a beacon and the total number of beacons, resulting in
sparsely sampled beam measurements than Wi-Fi at sub-7 GHz.

2) Irregular sample intervals: Consider a scenario where the
access point (AP) is the initiator and the users are responders. When
the responder trains its (transmitting or receiving) beampatterns, a
sequence of M sector sweep (SSW) frames is sent via different
beampatterns to the initiator and the initiator can compute M
corresponding SNRs, b1, b2, · · · , bM , within a responder channel
time. When multiple users exist, each user needs to contend the
next responder channel time and one contending user is randomly
selected. As a result, the contention-based channel access results in
irregularly beam SNR measurements at AP for a given user.IC
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Fig. 2. Dual-Decoder Neural Dynamic Learning framework.

To address the above challenges and inspired by recent advances
in neural ordinary differential equation (NODE) [27], this paper
proposes a dual-decoder neural dynamic learning framework that
learns a consistent ODE, via strong supervisions from both coordinate
and measurements levels at two separate decoders, to describe
unknown, continuous-time latent dynamics of the intermittently-
sampled mmWave Wi-Fi measurements. Compared with the original
single-decoder NODE, we show that the additional supervision at
the coordinate level leads to strong performance gain. The proposed
method was evaluated on an in-house mmWave Wi-Fi dataset and
compared with a range of baseline methods.

2. PROBLEM FORMULATION

We formulate the indoor localization as a sequence regression of
beam training measurements within a period of ∆Tw seconds for
trajectory estimation. Specifically, stacking the M beam SNRs
during one responder channel time ti as bi = [b1, b2, ..., bM ]T ∈
RM×1, the problem of interest is to utilize beam SNR measurements
{bi}Ni=0 at time steps {ti}Ni=0 with irregular sample intervals to
localize the object,

{bi, ti}Ni=0 → {ci}Ni=0, s.t. ∆ti = ti − ti−1 ̸= ∆ti+1 (1)

where ci = [xi, yi]
T consists of corresponding two-dimensional

coordinates (xi, yi) at ti. This is illustrated in Fig. 2 where the
trajectory estimation is to convert the set of beam SNRs {bi}Ni=0 at
intermittently-sampled steps {ti}Ni=0 (shown in the left bottom part)
to the set of {ci}Ni=0 over a continuous trajectory (shown in the right
bottom part).

3. DUAL-DECODER NEURAL DYNAMIC LEARNING

We frame our method as a latent-variable model, that we denominate
as dual-decoder neural dynamic (DDND). We present our framework
in Fig. 2. Corresponding Fig. 2 from left to right, in the subsequent
sections, we introduce the encoder structure for successive {bi}Ni=0

sequences, the process of learning the latent trajectory, and the
learning method empowered by strong supervision to enhance the
continuous trajectory learning.

Notation: θ denotes the learnable parameters in neural
networks. For simplicity, we use θe to denote the joint parameters
of all the networks comprising the encoder. We use θoe and θod to

denote the parameters of the networks comprising the encoder and
decoder ODE parts, respectively. We also use θr , θm, θb and θc to
denote the parameters of the Recurrent Neural Network (RNN), the
MLP that outputs the mean and standard deviation of the encoded
signal, and the two linear decoders. S denotes an arbitrary ODE
solver.

3.1. Waveform Temporal Information Encoding

Denote a sequence of beamSNR measurements within ∆Tw as
{bi}Ni=0 ∈ RN×B and its corresponding coordinates {ci}Ni=0 ∈
RN×2. We present the input as a temporal sequence to encode
the underlying dynamics of the variation of the mmWave Wi-Fi
signal with regard to the physical trajectory. We obtain the encoded
temporal information of every measurement by forwarding the
described temporal inputs through an ODE-RNN network [27].
The ODE and RNN blocks are modeled as neural networks Oθe(.)
and Rθe(.), respectively. When forwarding a beamSNR temporal
sequence, we reverse the time sequence from tN to t0. In this way,
the encoder network learns the approximate posterior at time t0.
These Neural ODE [28] blocks are used in the encoder network to
model the evolution of the hidden states h ∈ RE , where E denotes
the dimension of the hidden states. This behavior is modeled in
a continuous fashion h(t), as a solution to an ODE initial-value
problem:

dh(t)

dt
= Oθoe

(h(t), t), (2)

Oθoe
(.) defines the time-reversed evolution of the observed beamSNR

states as the solution of an ODE:

h′
i−1 = S(Oθoe

,hi, (ti, ti−1)), (3)

then, the hidden state is updated for each observation as a standard
RNN update:

hi−1 = Rθr (h
′
i−1,bi−1). (4)

In our approach, we want to characterize z0 that represents the latent
initial state of the encoded trajectory. For that purpose, the mean and
the standard deviation of the approximate time-reversed posterior
qθoe (z0|{bi, ti}0i=N ) are a function of the final hidden state of the
encoder:

qθe(z0|{bi, ti}0i=N ) = N (µz0 , σz0), (5)

where
µz0 , σz0 = Mθm(Oθoe

({bi, ti}0i=N )), (6)
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where Mθm(.) is a neural network translating the last hidden state
of the encoder into the mean and variance of the latent initial state
z0.

3.2. Latent Dynamics

Once estimating the approximate posterior qθe(z0|{bi, ti}0i=N ), the
beamSNR variable-length input sequence {bi}Ni=0 is encoded into a
fixed-dimensional latent space embedding z ∈ RL, where L denotes
the dimension of the latent space. The latent trajectory is obtained
by first sampling z0 ∼ qθe(z0|{bi, ti}0i=N ) from the estimated
posterior. Then, on the decoder side, another ODE Oθod

is modeled
as a neural network. During the training, Oθod

will learn the latent
trajectory dynamics that relate the variation of the signal and the
physical trajectory while during the forward pass, it will query the
latent trajectory at the specified time instants. For these matters, z0
is used as the initial value for the ODE solver on the decoder side:

(7)
z0, ..., zN = z0 +

∫ tN

t0

Oθod
(zt, t)dt

= S(Oθod
, z0, (t0, ..., tN )).

Up to this part, the beamSNR input sequence has been decoded into
the latent trajectory {bi}Ni=0 → {zi}Ni=0.

3.3. Dual Decoder

In order to guarantee a suitable latent trajectory learning dynamics,
we propose to condition the learning by including two linear
decoders in the decoder side: waveform reconstruction Bθb(.),
and trajectory regression Cθc(.). These two heads will take as input
the latent trajectory, in order to perform the reconstruction of the
input signal

b̂i = Bθb(zi) = Wbzi + vb, (8)
and its corresponding trajectory regression

ĉi = Cθc(zi) = Wczi + vc, (9)

where Wb, Wc denotes the weight matrices and vb, vc the bias
vectors, respectively. Note that the input for both decoder heads
is the predicted latent trajectory by the decoder ODE. Also, the
proposed decoders use shared weights for the input sequences. In
this way, we are imposing strong supervision for every time instant
in the latent trajectory by using the real trajectory and the variation
of the signal as conditions to modify the learning dynamics of the
latent trajectory. This leads to an enhancement in learning the
continuous dynamics of the trajectory from the latent space.

3.4. Dual-Decoder Neural Dynamic Loss

We propose to train in an end-to-end encoder-decoder structure to
minimize the dual-decoder loss which is given by

L=

[
α∥ĉ0−c0∥1+

1

N

N∑
i=1

∥ĉi−ci∥1

]
+β

[
1

N

N∑
i=0

∥b̂i−bi∥1

]
(10)

where the first term corresponds to the trajectory regression, and
the second term to the waveform reconstruction. We also have two
hyperparameters α and β to balance their importance during the
learning. In the first term, we are weighting the first coordinate of the
trajectory on its own with the α factor. This is done to enhance the
trajectory learning, as we are solving an ODE initial-value problem,
being the first point of the trajectory determinant for the trajectory
regression.

3.5. Complexity Analysis

The time complexity of an ODE-RNN depends on the number of
hidden units in the recurrent layer H and the number of time steps
in the input sequence T . Then, the time complexity of the forward
pass of the ODE-RNN can be approximated as O(TH2). Similarly,
for the linear layers, an input dimension N and an output dimension
M will be expressed as O(NM + M). In this way, our proposed
framework has approximately a time complexity:

O
(
T (H2

e +H2
d + (L+ 1)(B + C))

)
, (11)

where the sub-indexes represent the encoder and decoder ODEs,
respectively, L is the dimension of the latent space, and B and C
are the dimensions of the output linear decoders, respectively.

Remark: Recurrent Neural Networks (RNNs) are not the
best solution to learning irregularly-sampled dynamics. Although
some tricks have been performed to address this problem, such as
inputting the time difference information as a feature or computing
an exponential decay between observations [29], they are still not
modeling the underline continuous dynamic of an irregular time
series data. This highlights the difficulty of intermittent-sampled
data. That is why we propose this end-to-end structure that first
tries to encode the continuous dynamics of the signal along the
trajectory into a latent distribution. This latent distribution represents
the encoded dynamics of the motion up to the first location of
the trajectory, regardless of the intermittency due to the NODE.
Modeling ODEs as neural networks in both the encoder and the
decoder side enables learning the continuous behavior of the data
and provides great flexibility to design the decoder side.

4. PERFORMANCE EVALUATION

In the following, we present a performance evaluation using real-
world mmWave Wi-Fi data from COTS 802.11ad devices.

4.1. mmWave Wi-Fi Localization Dataset

We use 802.11ad-compliant TP-Link Talon AD7200 routers to
collect beam SNRs at 60 GHz [30]. A small in-house mmWave
Wi-Fi dataset for moving object localization is collected with one
router placed on a fixed stand and the other on a TurtleBot as
the moving object. The TurtleBot is equipped with a LiDAR and
wheel encoder for mapping and gathering location labels. For
each responder channel time ti, the Talon AD7200 router uses 36
directional beampatterns to train the beam, and, hence, we have
M = 36 for b.

4.2. Implementation

We use a sequence time window of ∆Tw = 5 seconds to group the
raw mmWave Wi-Fi beam SNR dataset into sequences with varying
numbers of samples, due to the irregular sampling of the beam
SNR. We split the sequences into training, validation, and test sets,
respectively, with a ratio of [0.8, 0.1, 0.1]. We also standardize each
entry bm in the beam SNR by subtracting the mean and normalizing
it with the standard deviation. The time vector {ti}Ni=0 within each
∆Tw is normalized into [0, 1]. We implement the proposed method
in the Pytorch framework with a hidden state dimension of E = 20
and a latent dimension of L = 20. We use the 5th-order Runge-
Kutta ODE solver for the decoder. We train the network using the
Adamax optimizer with a learning rate of 0.01 and no weight decay.
The model is trained with a mini-batch size of 32 sequences, and the
loss weighting terms are α = 0.5 and β = 0.1.
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(a) (b) (c) (d)

Fig. 3. Visualization of trajectory estimation over selected test sequences: (a) SVR (b) RNN Expdecay (c) RNN ∆t (d) DDND

Fig. 4. Cumulative distribution function (CDF) of localization
errors.

4.3. Comparison to Baseline Methods

We evaluate the following baseline methods and variants of our
framework for the ablation study:

• Frame-based: 1) support vector regressor (SVR); 2) A fully
connected neural network regressor (FCNNR);

• Sequence-based: 3) An RNN with exponential decay; 4)
RNN with ∆ti attached to the beam SNR;

• Variants of the proposed framework: 5) single-decoder
neural dynamic (SDND); 6) DDND with KL divergence
(DDND+KL); 7) DDND without KL divergence (DDND).

For the frame-based methods (i.e., 1) and 2)), the coordinate is
estimated only from the current frame. The sequenced-based
baseline methods (i.e., 3) and 4)) are standard RNNs with the
following modifications to handle the irregularly sampled beam
SNRs. For the RNN with exponential decay, it applies an exponential
decay from one hidden state to the next h′

i = e−∆tihi. For the
RNN ∆t, the input is the concatenation of the beam SNR bi and the
sample interval ∆ti. For 5), we first design a single head decoder
model without the waveform reconstruction Bθd(.) decoder, while,
for 6), we include an additional KL divergence term to our loss
function of (10). The localization error is computed as the root
mean-squared errors (RMSE) between the estimated ĉ and the
ground truth c.

Fig.3 shows the estimated trajectories over test sequences for
selected methods. For the frame-based SVR method, the point-like
coordinate estimates are scattered within the square trajectory in

Table 1. Localization errors (m) on beamSNR localization dataset.
Mean Median CDF@0.9

SVR 0.42 0.15 1.05
FCNNR 0.46 0.11 1.43

RNN Expdecay 0.40 0.18 1.12
RNN ∆t 0.33 0.13 1.09

SDND (ours) 0.34 0.11 0.88
DDND+KL (ours) 0.26 0.11 0.74
DDND (ours) 0.17 0.09 0.52

Fig.3 (a). This is slightly improved by the sequence-based RNN
expdecay method in Fig.3 (b) and RNN ∆t in Fig.3 (c) as more
trajectory estimates are pushing towards the square trajectory. By
comparing Fig.3 (d) to Fig.3 (a)-(c), it is clear to see that the
proposed DDND is able to learn the underlying dynamics and have
more clustered trajectory estimates around the true square trajectory.

Fig.4 compares the baseline methods against the proposed
solution in terms of the cumulative distribution function (CDF) of
the localization error. It shows that proper learning and modeling
of the latent dynamics and trajectory motion of the moving object
from irregularly-sampled Wi-Fi data can improve the localization
performance over the frame-based and traditional sequence-based
methods. The proposed method and its variants (5), 6) and 6)) are
seen to have significantly fewer large localization errors in Fig.4. For
instance, the proposed DDND method has 10% fewer localization
errors that are larger than 0.6 m than all baseline methods.

Table 1 further summarizes quantitative performance in terms
of the mean, median, and location error corresponding to the 90th
percentile of the CDF. It further confirms that the proposed DDND
can better deal with the irregularly sampled beam SNRs and model
the underlying dynamics of the latent space in a continuous-time
fashion. Compared with the modified RNN methods, the DDND
method almost reduces the localization error by half for all three
performance metrics.

5. CONCLUSION

This paper tackles the problem of intermittently-sampled mmWave
Wi-Fi beam training measurements for localization. Specifically,
we proposed the dual-decoder neural dynamic framework that
learns the continuous inherent latent dynamics. Performance
comparison confirms the performance gain of the proposed method.
We plan to scale up the mmWave Wi-Fi dataset by including
localization scenarios over multiple trajectories, considering the
usage of multiple devices as well as the fusion of multi-band
measurement features.
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