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ABSTRACT

This paper leverages the potential of Large Intelligent Surfaces (LIS)
for radio sensing in 6G wireless networks. By taking advantage
of arbitrary communication signals occurring in the scenario,
we apply direct processing to the output signal from the LIS to
obtain a radio map that describes the physical presence of passive
devices (scatterers, humans) which act as virtual sources due to
the communication signal reflections. We then assess the usage of
machine learning and computer vision methods including clustering,
template matching and component labeling to extract meaningful
information from these radio maps. As an exemplary use case,
we evaluate this method for passive multi-human detection in an
indoor setting. The results show that the presented method has high
application potential as we are able to detect around 98% of humans
passively even in quite unfavorable Signal-to-Noise Ratio (SNR)
conditions.

1. INTRODUCTION

Sensing can be regarded as the ability of wireless systems to process
the signals with the aim of describing the physical environment.
There are different methodologies to perform sensing using wireless
signals. Essentially, some of these methods use dedicated signals
and/or specific hardware [2–9], while others use communication
signals of commodity devices to perform the sensing task [10–16].
As an example of the first type, in [4–7] they employ Radio
Tomographic Image (RTI), which is a Received Signal Strength
(RSS)-based technology for rendering physical objects in wireless
networks. They create a radio map based on the RSS variations due
to objects presence in the scenario by deploying nodes around
the room conforming a Wireless Sensor Network (WSN). In
turn, by making use of the communication signals occurring in
an environment and avoiding dedicated transmissions [10, 11], one
can rely on properties of the wireless channel such as the Channel
State Information (CSI) using commodity Wi-Fi devices, to perform
sensing tasks as human gesture recognition or fall detection. Works
like the ones presented in [2,3,8,9] capture the reflections of wireless
signals, similar to the radar principle.

In the context of communications, the Multiple-input Multiple-
output (MIMO) technique is a fundamental technology in 5th
generation of wireless networks (5G) with the main purpose of
increasing area spectral efficiency [17, 18]. Intending to push
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their benefits to the limit and look towards post-5G, researchers
are defining a new generation of base stations that are equipped
with an even larger number of antennas. The concept of Large
Intelligent Surface (LIS) gained a lot of attraction. It designates
a large continuous electromagnetic surface able to transmit and
receive radio waves. While the potential for communications of LIS
is being investigated, these devices offer possibilities that are not
being understudied accurately, i.e., environmental sensing based on
radio images [19].

Due to the increasing interest in both sensing and LIS, and
motivated by their future integration in communication systems,
in this work, we are focusing on LIS sensing capabilities. We
make use of a method that enables reconstructing a radio map
of the propagation environment using an indoor LIS deployment
in the ceiling [1, 20, 21]. This radio map shows the presence of
active and passive (scatterers/humans) users in the environment by
piggybacking the communication signals. We solve a problem of
passive multi-human detection in the scenario using the reconstructed
radio maps. Detecting passive humans is of great interest as we are
relying on environmental radio signals and do not need dedicated
devices. This could be quite to optimize beamforming towards
the passive human enabling the access phase with an optimized
radiation pattern, for Electromagnetic (EM) avoidance and Physical
Layer Security (PLS), where the detection of the passive target is
mandatory to perform beamforming. The solution is based on the
k-means clustering of the radio maps, followed by the application
of image processing to enhance the quality and computer vision
to perform the detection. We measure the detection accuracy as
the number of users detected while also verifying the positioning
accuracy.

2. PROBLEM FORMULATION AND SYSTEM
DESCRIPTION

Let us consider an indoor scenario where U users are randomly
deployed in a room. Within the U users, a subset Ua are commodity
wireless devices fulfilling their communication tasks, while Up =
U − Ua users are just passive human beings. The objective is,
hence, sensing the position of both the Ua active and the Up passive
humans from the signals radiated by the former. For the sake of
simplicity, we assume the Ua users transmit at the same frequency —
representing, e.g., Wi-Fi signaling or transmissions at some cellular
frequency band. To perform the sensing, we assume that an LIS
of M antenna elements is placed along the ceiling, whose physical
aperture comprises its whole area. The sensing problem reduces
to determine, from the superposition of the received signals from
each of the Ua users at every of the M LIS elements, the (x, y)IC
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coordinates of the Up passive humans. The superposed complex
baseband signal received at the LIS is given by

y =

Ua∑
u=1

huxu + n, (1)

with xu the transmitted (sensing) symbol from user u, hu ∈ CM×1

the channel vector from a specific position of user u to each antenna-
element, and n ∼ CNM (0, σ2IM ) the noise vector. Please note
we are considering a narrowband transmission, avoiding frequency
selectivity effects.

3. LIS RADIO MAP GENERATION

Due to the large physical aperture of the deployment in comparison
with the distance between the transmitters and the LIS, spherical
wave propagation needs to be taken into account, and thus the
channel coefficient hs,i at the LIS i-th element from an arbitrary
user transmission is proportional to [22]

hs,i ∝ 1

di
e−j 2π

λ
di , (2)

where di =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 denotes the
distance between the active device u and the i-th antenna, and λ
is the wavelength. We are interested in determining the spherical
steering vector by using (2). For that we define an array of N × N
m aperture with an antenna spacing of ∆s = λ

2
resulting in Nf =

N
∆s

× N
∆s

antennas and we set a f . We then emulate a transmitter
in the center position of the filter (xu, yu, zu) = (N

2
, N

2
, 6.2) m1.

Next, we compute eq (2) with respect to all the antenna elements
from the designed array, obtaining hs. Figure 1 shows the expected
spherical pattern hs. We are not interested in the absolute phase
values but in their variation along the space. In this way, describing
the surface in a vectorized notation, we can derive a Matched Filter
(MF) such that:

yf = hs ∗ y, (3)

where ∗ denotes the convolution operator. This convolution is
performed along all the LIS dimension. Then, hs ∈ CNf×1 denotes
the expected spherical pattern (steering vector) for Nf antennas LIS
deployment on (2), y the received signal from (1) and yf ∈ CM×1

the filtered output that represents the radio map. To guarantee the
same output dimension (due to the 2D convolution along the LIS),
we zero-pad y such that the output yf ∈ CM×1. To obtain a radio
map, we just need to compute the energy at the output of the MF
procedure |yf | ∈ RM×1. We then map the values to the RGB
scale using the function F : RM×1 → {[0, 255] ∩ N}M×3 such
that ym = F (|yf |). Fig. 2 shows an exemplary radio map. In
the exemplary scenario, one active transmitter Ua = 1 is used,
while three static scatterers are present in the environment. We see
the three scatterers in the environment (the cylindric-like shapes)
while we can also identify the highest peak representing the user
transmission. The scatterers are captured because from the receiver
LIS viewpoint, they act as virtual sources that are equivalent to LoS
components, i.e., in (2) the different reflections are equivalent to a
LoS path.

1The distance zu = 6.2 is a parameter for the filter design. This does not
imply that in the evaluation, all the transmitters or scatters are fixed at this
distance. In our work, we set f = 3.5 GHz and N = 4 m.
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Fig. 1. Phase representation of the designed filter based on (2).
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Fig. 2. Exemplary radio map obtained in a noiseless scenario with
Ua = 1 users by using the MF design represented in Figure 1.

4. PASSIVE MULTI-HUMAN DETECTION BASED ON LIS
RADIO MAP

4.1. Offline scanning phase

We first take advantage of an offline scanning period phase in
which we measure different transmissions of any Ua active devices
to scan the static features of the propagation environment. We
then obtain Ua measurements of the environment for different
random active user positions when no passive humans are in the
scenario. Figure 2 shows that we have mainly two dominant
ranges of pixel values, either low energy at the output of the
MF (the background) or high energy (the active transmitter and
scatterers). This leads us to apply a k-means clustering w.r.t. the
pixel values of the radio map (with k = 2) to enhance the radio
map through its binarization. We then define the clusterization
as K : {[0, 255] ∩ N}M×3 → {[0, 255] ∩ N}M×1 such that
yc = K(ym). Figure 3a shows a clusterized version of the radio
map presented in Figure 2. It shows the enhanced areas of the static
features of the environment as well as the active transmitter. We use
a computer vision technique called Template Matching [23], which
detects parts in an image that matches a template image, to remove
the expected active transmitter pattern from the clusterized map yc.
By combining different active transmissions along the scenario, we
can combine several radio maps to obtain an enhanced version that
highlights the scatterers presence in the scenario, as shown in Figure
3b. These multiple transmission positions illuminate the scatterers
from different angles. Furthermore, these map pixel values are
either 0 (black) or 1 (white), being white the representation of the
scatterers. We will denote this processed map as positive masking
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(a) Exemplary clusterized k-means
map obtained by using the MF map
in Figure 2.
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(b) Exemplary clusterized k-means
positive masking map obtained by
the combination of Ua = 10
random transmissions.
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(c) Exemplary clusterized k-means
negative masking map obtained by
the combination of Ua = 10
random transmissions.
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(d) Exemplary logical OR processed
negative masking map obtained by
the combination of Ua = 10
random transmissions.

Fig. 3. Radio map processing

map, y+
TM .

By having this representation of the static elements of the
environment, we can now store y+

TM locally at the LIS to process
new maps and remove the static elements of it when trying to detect
humans passively.

4.2. Detection phase

For this purpose, when there are passive humans in the room, we
can follow the same procedure as before but obtaining a negative
masking map y−

TM (meaning scatterers are now black) for every
temporal radio map snapshot s ∈ S. Figure 3c shows an example
of a negative masking map y−

TM when there is Up = 10 passive
humans in the scenario. We see now the scatterers and the humans
are represented in black (0 value). Next, We will use it to perform
a logical OR operation (+) with the locally stored masking map
y+
TM . Formally, we denote this operation as yOR = y+

TM + y−
TM .

Furthermore, we obtain the OR map yOR, shown in Figure 3d,
which eliminates the static scatterers of the scenario and highlights
the passive humans reflections. We can see in the map that there
are some artifacts (salt-pepper noise) as a result of this process. To
alleviate it, we define a sliding window algorithm of size Kc × Kc

that set all the pixel values comprising the window size to 1 (white)
if the number of black pixels in that window is lower than a defined
threshold Th. In this way, we can reduce significantly this salt-
pepper noise. Figure 4b shows the removal of the artifacts thanks to
this procedure. Finally, we are interested in detecting these shapes
associated to the passive human positions in the radio maps. For
that, we adopt a computer vision algorithm named Component
Labeling [24] which compares neighboring pixels to detect a shape
that is assigned to the same label. Figure 4a shows the exemplary
groundtruth scenario in which these maps are computed while Figure
4b shows the result of detecting the Up = 10 passive humans. They

(a) Exemplary
groundtruth scenario
with Up = 10
represented as
rectangles.

(b) Component
Labeling applied to
Figure 3d.

Fig. 4. Groundtruth position of the Up humans vs the Component
Labeling result.

are assigned to different colors (labels) for illustration purposes.
Hence, we can infer the passive human positions by obtaining the
center pixel coordinates of these shapes cp = (xp, yp). To infer the
real position, we just compute c = cp ×∆s, where ∆s denotes the
antenna spacing. Algorithm 1 further summarizes the procedure.

Algorithm 1: Passive multi-human localization
Offline Scanning Phase:
I. Measure the Ua superposed complex baseband signal at
the LIS, y, as shown in (1)
II. K-means clustering with K = 2 is applied to the
processed map ym such that we obtain yc

III. Obtaining y+
TM through Template Matching to

eliminate the Ua active transmitters
IV. Store locally y+

TM at the LIS
Detection phase: Passive multi-human detection
for each s ∈ S do

I. Follow same procedure I-II from Offline Scanning
Phase
II. Obtaining y−

TM through Template Matching to
eliminate the Ua active transmitters
III. Computing the OR map yOR

IV. Filtering salt-pepper noise with sliding window
Kc ×Kc and threshold Th

V. Applying Component labelling to detect the shapes
of the Up passive humans
VI. Compute c to infer the locations

end

5. SIMULATION, NUMERICAL RESULTS AND
DISCUSSION

5.1. Simulated scenario

We conducted simulations via ray tracing [25] to simulate the
multipath in a reliable way. We simulate a scenario of size 10.34 ×
10.34× 8 m. We deploy an LIS with 259× 259 elements separated
λ/2. Each Ua active device transmits an arbitrary narrowband
signal of 20 dBm at 3.5 GHz. The distance from which the MF is
calibrated is zu = 6.2. The active Ua are assumed to be ≥ 1.8
m height, being this value randomnly selected. The scatterers are
modeled as metallic (with conductivity s = 19444 S/m, relative
permittivity ϵ = 1 and relative permeability µ = 20)2 cylinders of
1 m diameter and 2 m height. The passive Up humans are model as

2These values are provided by the software manual [25].
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Fig. 5. Average human detection percentage (%) and positioning
errors (cm) with fixed LIS aperture of M = 259×259, in a γ = 0 dB
condition, with S = 100 averaging strategy and Up = 10 humans
in the scenario.

rectangles of dimensions 0.3x0.5x1.7 m (average human dimensions
obtained from [26]) with s = 1.44 S/m, ϵ = 38.1 and µ = 1 [27].

5.2. Received signal and noise modeling

From the ray-tracing simulation, the received signal in (1) is obtained
as the complex electric field arriving at the i-th antenna element, Ẽi,
which can be regarded as the superposition of each ray path from
every u ∈ Ua user. Then, the complex signal at the output of the i-th
element is therefore given by

yi =

√
λ2Zi

4πZ0
Ẽi + ni, (4)

with Z0 = 120π the free space impedance and Zi the antenna
impedance. For simplicity, we consider Zi = 1∀ i. We define the
average Signal-to-Noise Ratio (SNR), γ, is defined as

γ ≜
λ2

4πZ0Mσ2

M∑
i=1

|Ẽi|2. (5)

We assume the system can obtain S extra samples at each
channel coherence interval to perform an S-averaging, diminishing
the noise variance contribution.

5.3. Passive human detection

We here leverage the performance for passive human detection in
the scenario using the method described in Section 4.1. We consider
Up = 10 humans at arbitrary positions in the scenario.

The detection of passive humans is highly impacted by the Ua

active devices positions. For the sake of generalization, we perform
Monte Carlo simulations for obtaining our results under different
random configurations. Figure 5 shows the average, maximum
and minimum positioning errors of the correctly detected passive
humans as well as the average detected humans by using a different
number of active users Ua. Please note, we are not using dedicated
active transmissions for this task, but we take advantage of the
wireless communications occurring from these active devices in
the scenario. The results show that the number of active users
does not really impact on the positioning performance as it remains
similar when using a lower and a higher number of active users Ua.
However, by increasing Ua, the number of passive humans detected
increases. This is because the more the transmissions, the more
reflections we obtain from the human body reflections leading to an
easier detection of the passive humans. Furthermore, the detection
of this system is quite accurate, as we can detect a minimum of
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Fig. 6. Exemplary human detection with fixed LIS aperture of M =
259 × 259, in a γ = 0 dB condition, with S = 100 averaging
strategy, Ua = 20 active users and Up = 10 humans in the scenario.

Fig. 7. Average human detection with fixed LIS aperture of M =
259 × 259, in a γ = 0 dB condition, with S = 100 averaging
strategy, Ua = 20 active users and Up = 2 humans in the scenario.

around 80% humans in all the configurations and the average error
is around 28 cm. Figure 6 shows an illustration of the inferred
positions w.r.t. the groundtruth positions. It shows the positioning
accuracy is quite high even with 10 people passively sensed.

5.4. Passive human detection distance evaluation

Finally, we here evaluate the accuracy of the detection of passive
humans by comparing performance under different separations
among them. As we are interested in checking the distance at
which the performance may decrease significantly, we set Up = 2
humans separated 25/50/75/100 cm apart, respectively. We test
different separations and we evaluate the detection performance of
the Up = 2 passive humans. Figure 7 shows the average detection of
the humans. We can see the system achieves around 1.5/2 detections
in the most challenging case (25 cm) while obtaining around 1.8/2 in
the most favorable (100 cm). This shows the potential of the system,
even when the separation among humans is quite small.

6. CONCLUSIONS

The presented use case shows machine learning and computer
vision algorithms are a powerful tool to take into account when
using an image-based LIS sensing approach. Moreover, we note
that LIS is one of the technologies being considered for future 6G
systems, which may change the relevant cost/benefit analysis in
that any sensing functionality is then expected to be added onto the
system rather than requiring explicit investment on extra dedicated
hardware.
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“Requirements for the internal layout of wooden house from
the point of view of ergonomics changes,” Zeszyty Naukowe.
Quality. Production. Improvement, 2018.

[27] Peter S Hall, Yang Hao, Yuriy I Nechayev, Akram
Alomainy, Costas C Constantinou, Clive Parini, Muhammad R
Kamarudin, Tareq Z Salim, David TM Hee, Rostyslav
Dubrovka, et al., “Antennas and propagation for on-body
communication systems,” IEEE Antennas and Propagation
Magazine, vol. 49, no. 3, pp. 41–58, 2007.

Authorized licensed use limited to: SSEN. Downloaded on May 10,2023 at 11:52:12 UTC from IEEE Xplore.  Restrictions apply. 


