A New Perspective on *Effective Goal-Oriented Communication* in the Era of Networked Intelligence

Marios Kountouris

Communication Systems Department EURECOM Sophia-Antipolis, France

> ITN Windmill Training Week ETHZ, Zürich

September 7, 2022

European Research Council Established by the European Commission

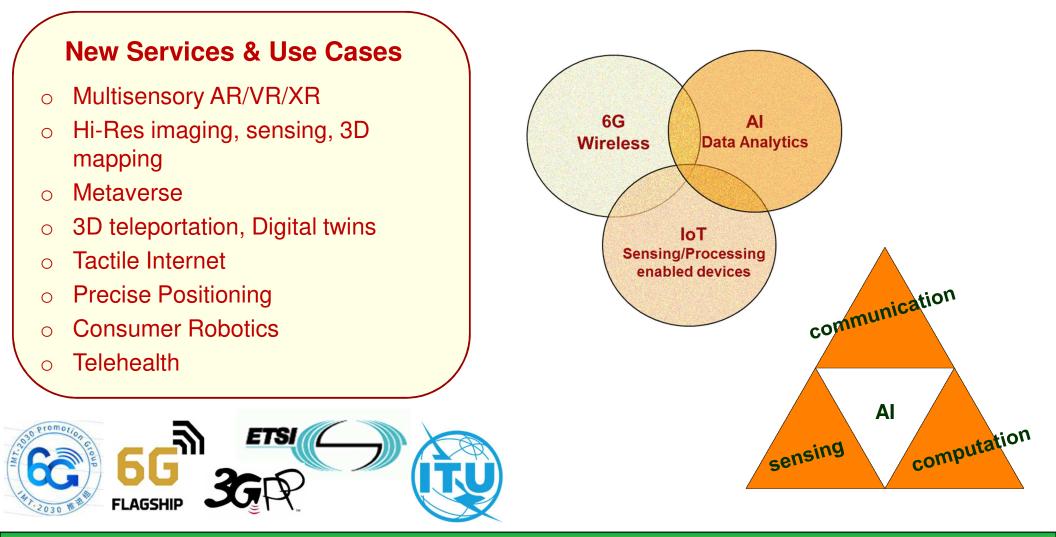
The Future of Communication Systems

Al-based ComNets ? Role of PHY/MAC & NET Layers? Any Novel Paradigm ?

Clean slate? Key Tech Enablers ? $6G \ge 5G+ = faster 5G$?

Networks

A Consensus View on Future Wireless

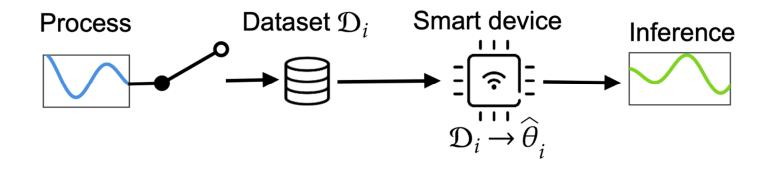


2G	3G	4G	5G	6G
Voice	Visio-phony	Mobile Internet	Wireless for Things	Wireless for ???
erc	08/09/2022	ITN Windmill Train	ing Week - p 3	EURECOM

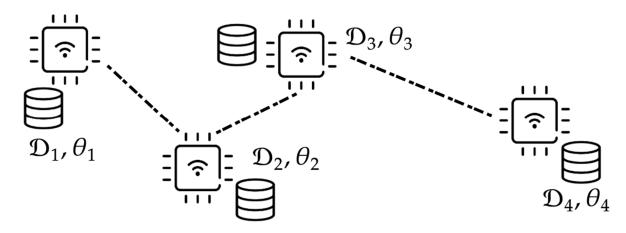
Wireless in the Era of Networked Intelligence

Two key features of Emerging Wireless Networks

• Smart edge devices, collecting data and extrapolating concepts.



Device-to-Device (D2D) connectivity and Multi-Agent Systems.

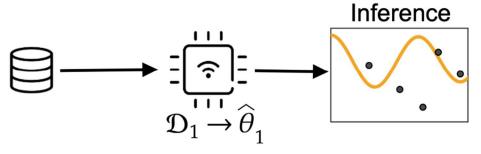


Decentralized Learning

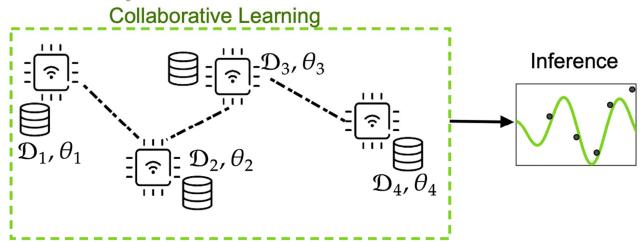
One for does not make Spring

• A single device may not have a large enough dataset \mathfrak{D}_i or computational resource

to **timely** optimize the model θ_i with satisfactory inference performance.

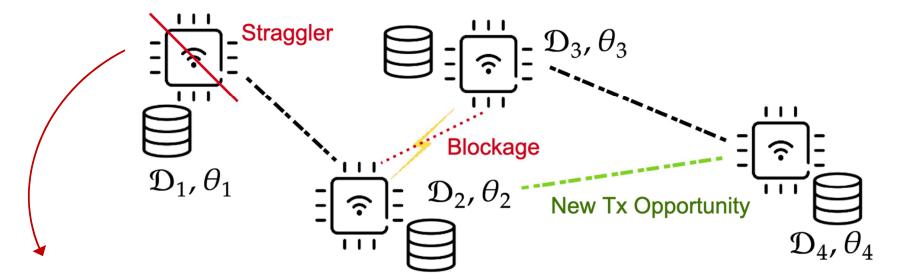


 Decentralized learning empowers smart edge devices to share data and computational resources to *collaboratively* train an ML model.



Decentralized Learning over Unreliable Edge Networks

- Collaborative learning over wireless networks limited to scenarios with
 - fixed network connectivity
 - **reliable** network devices (always available for computations, no channel impairments).
- But, wireless network connectivity is time-varying and edge devices are unreliable workers.



Stragglers introduce asynchronicity/inconsistency by disseminating outdated model estimates

Decentralized Learning Problem

Network of *m* smart edge devices, each with a local dataset \mathcal{D}_i , a local model estimate $\theta_i \in \mathbb{R}^d$,

and loss function $f_i: \theta_i \to \mathbb{R}^+$

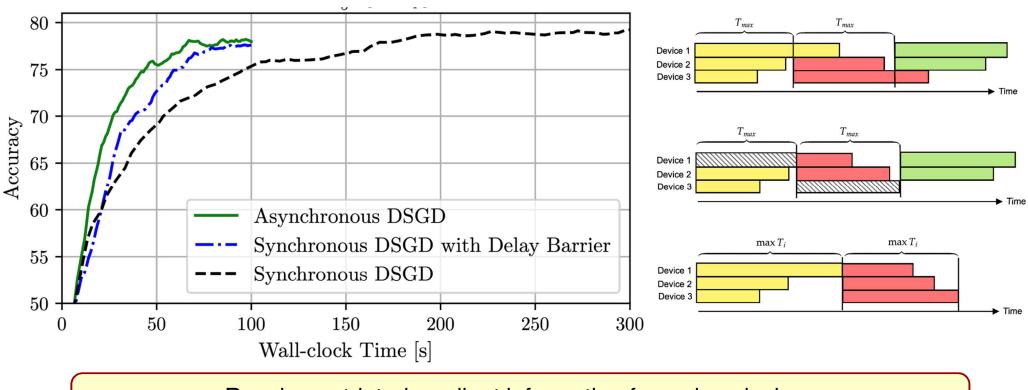
Network goal: minimize the network aggregate empirical loss

$$\begin{array}{l} \underset{\theta_{1},\ldots,\theta_{m}}{\text{minimize }} f(\theta_{1},\ldots,\theta_{m}) := \frac{1}{m} \sum_{i=1}^{m} f_{i}(\theta_{i}) \\ \text{s.t.} \quad \theta_{1} = \theta_{2} = \cdots = \theta_{m}. \end{array}$$

- Consensus constraint enforces *collaboration*.
 - Otherwise, the problem falls back to m parallel centralized (single-user) learning.
- Typically solved by iterative procedure that alternates between
 - local computation phase
 - one-hop neighbor communication phase

Asynchronous DSGD over Unreliable Wireless Networks

- Wireless network of 15 unreliable devices
- Collaborative training of a CNN to classify Fashion-MNIST images.
- Rayleigh fading and random computation time $T_{comp} = 0.25s + Exp(1)$ (shifted exponential)
- Strict delay barrier $T_{max} = \frac{4}{5} \mathbb{E}[T_{comp}]$

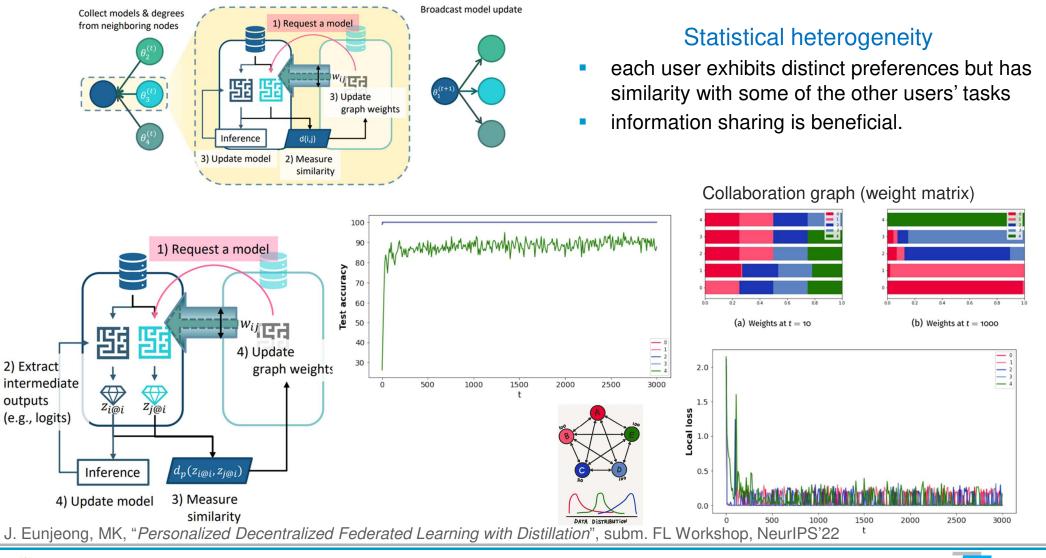


Reusing outdated gradient information from slow devices is beneficial in asynchronous decentralized learning.

J. Eunjeong, M. Zecchin, MK, "Asynchronous decentralized learning over unreliable wireless networks", Proc. IEEE ICC'22

Personalized Decentralized Learning

 How can agents improve upon their locally trained model by communicating with other agents that have similar objectives?



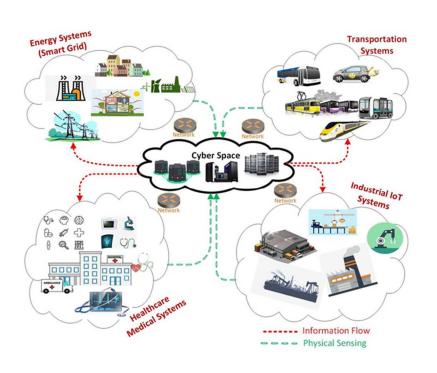
Fast Forward to 2030

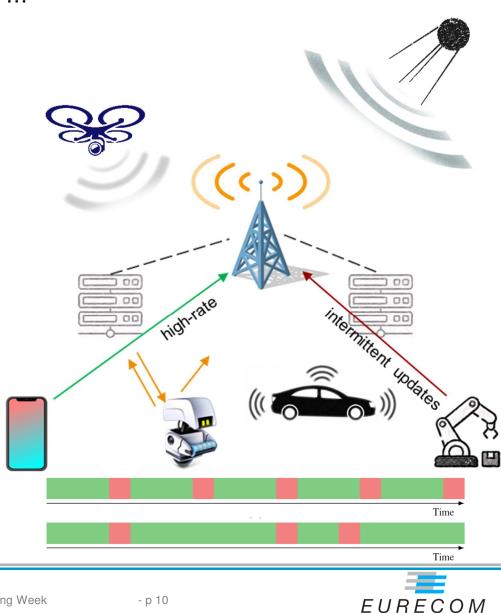
Cyber-Physical and Mission-Critical Interactive Systems

swarm robotics, self-driving vehicles, smart IoT, ...

Wireless Networked Intelligent Systems

- reliable *real-time* communication
- autonomous interactions
- automated timely decision making
- on-device & in-network computation...





From Connected Things to Connected Intelligence

Future Wireless Networks **under pressure** ... as always

Major Challenge

- process and transport massive amounts of data
 - generated by countless IoT connections
 - constraints: real-time, energy, security/privacy,...

Data

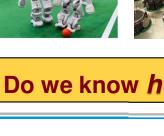
multimodal, high-dimensional, and geo distributed

Let the numbers speak

- Edge Intelligence ~ 4 Tbps
- Autonomous transportation 4 TB/day
- Digital industry & robotics $\ll 1$ ms

Do we know *how* to do it?

Do we have the right *theory* & algorithms?

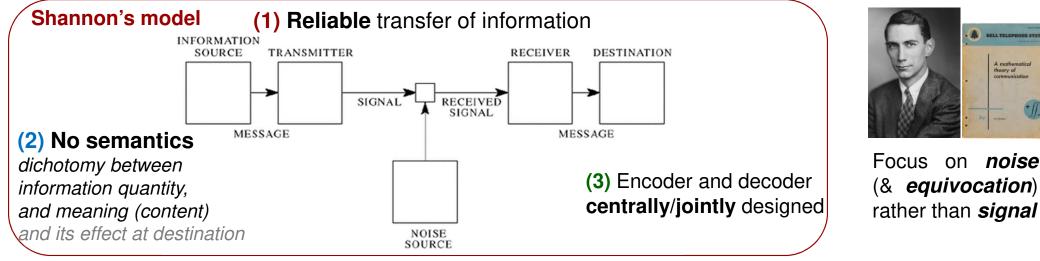


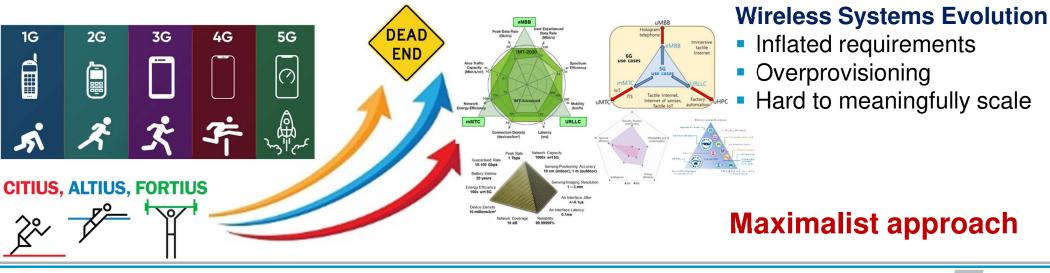
erc

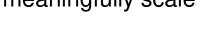
- p 11

The Road So Far

From Theory...

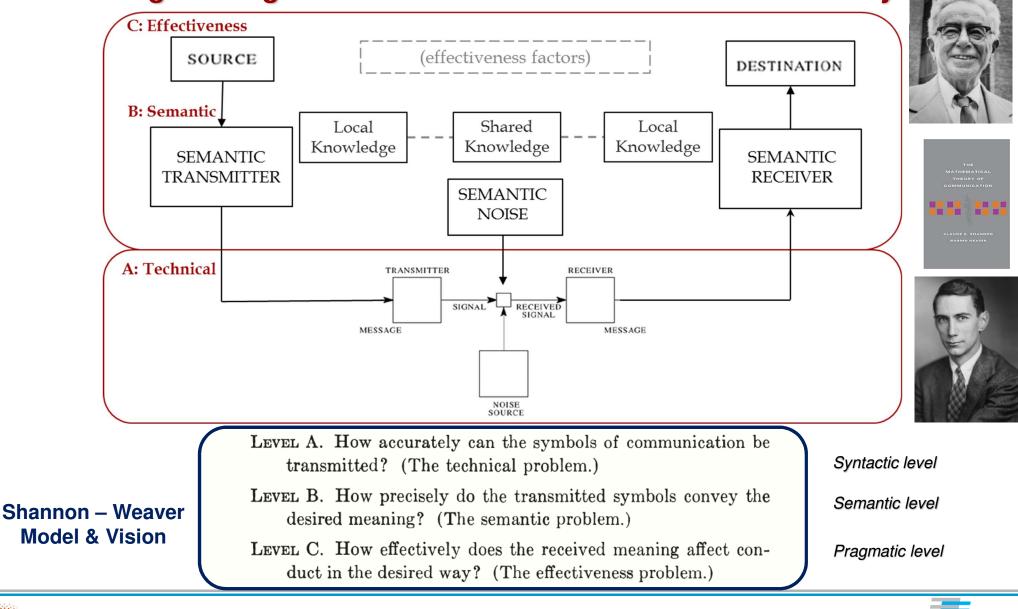






The Road Ahead

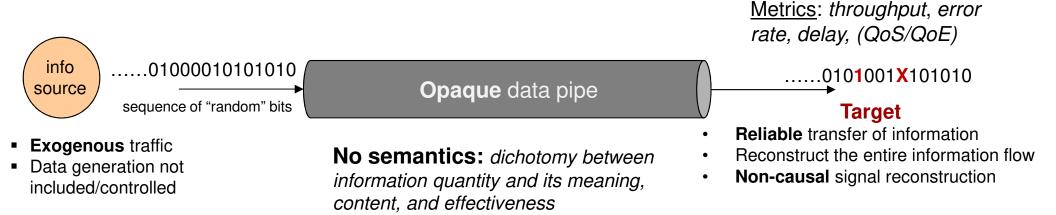
Augmenting Shannon's Communication Model & Theory



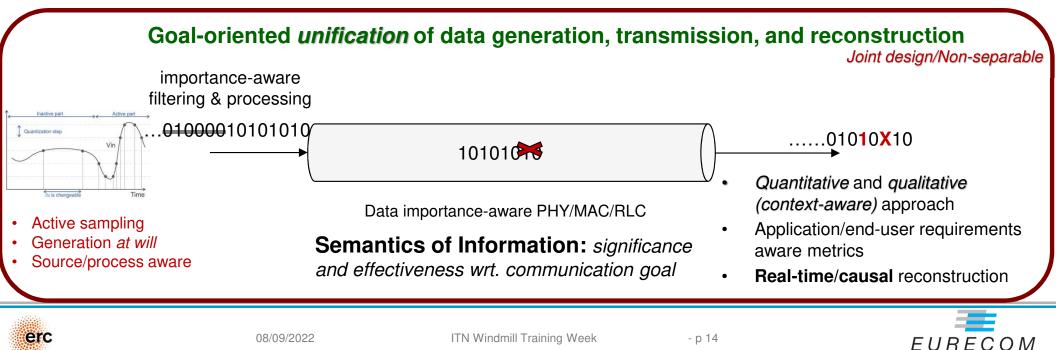
EURECOM

Effective Goal-Oriented Communications

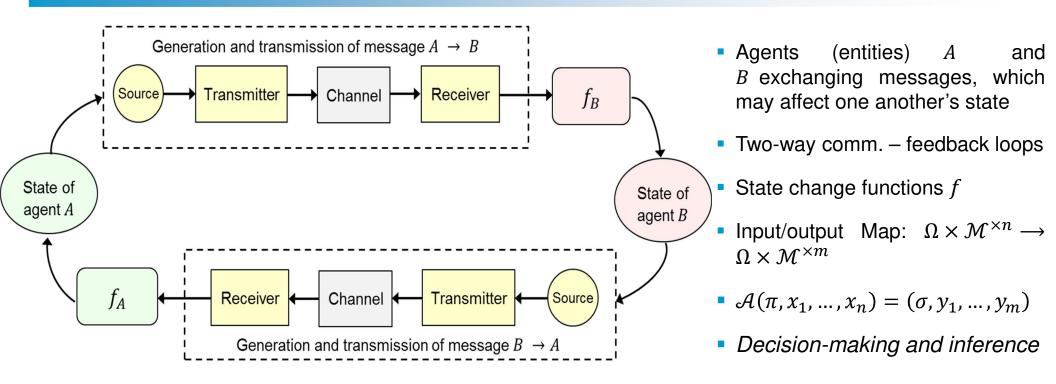
Shannon's Communication Model (1948)



Effective Goal-Oriented Communication Model (202X)



Effective Communication Diagram

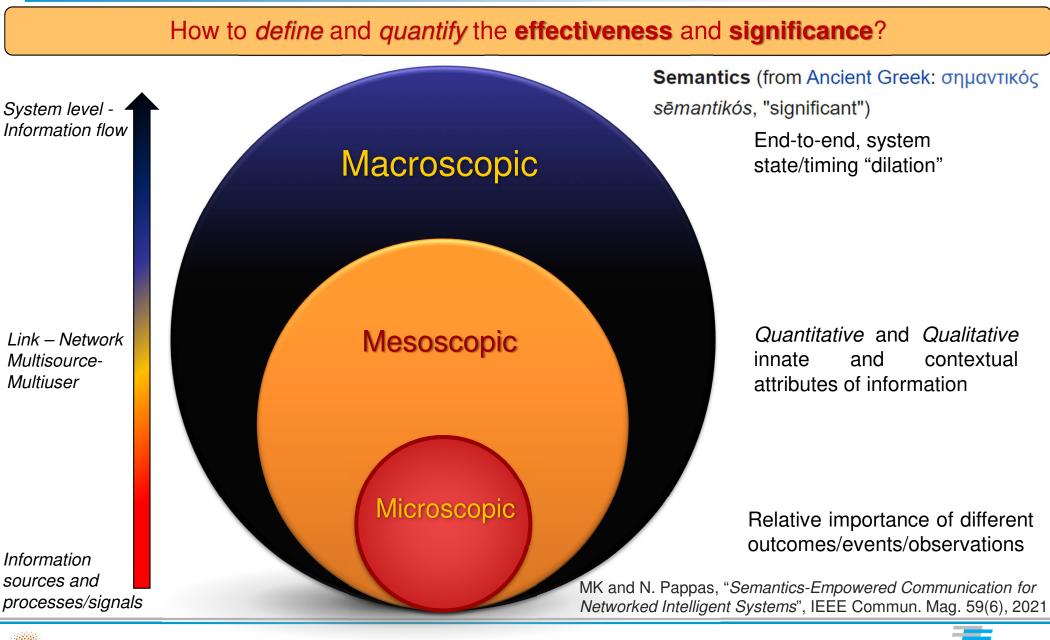


Various scenarios of interest

(i) **control-oriented** (e.g., remote control, actuation, real-time tracking,...)

- (ii) **computation-oriented** (e.g., function computation, labelling, feature extraction)
- (iii) **learning-oriented** (e.g. distributed/federated learning, generative model building,...)
- (iv) sensing/perception-oriented (e.g., multi-view cameras, SLAM, situational awareness,...)
- (v) knowledge-oriented

Defining Data Importance

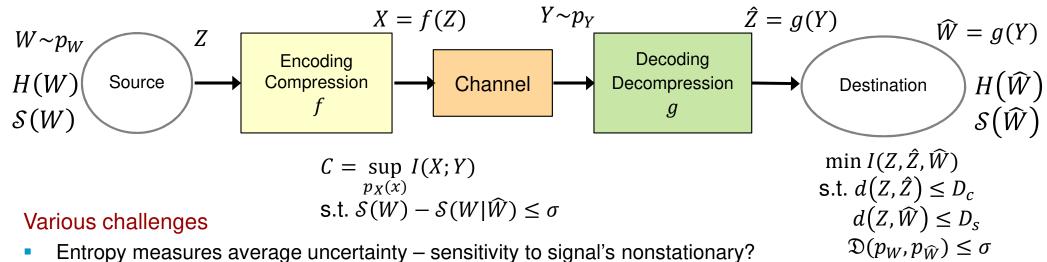


Information Importance Metrics

- **Rationale:** *incorporate disparity between outcomes of the same probability*
- Goal-oriented approach: occurrence of an event removes a double uncertainty
 - *Quantitative*: related to its probability of occurrence
 - *Qualitative:* related to its usefulness/utility for the fulfillment of the goal.
- Given a probability measure μ on data space \mathcal{X} and a countable partition \mathcal{P} . Let $f : \mathbb{R} \to \mathbb{R}$ and $g : [0,1] \to \mathbb{R}$ be continuous functions

$$S(\mu, \mathcal{P}) = S(X) = f\left(\sum_{P \in \mathcal{P}} g(\mu(P))\right) \begin{array}{c} f \text{ is increasing, } g \text{ is subadditive and concave} \\ OR \\ f \text{ is decreasing, } g \text{ is superadditive and convex} \end{array}$$

Satisfying axioms? (Khinchin's, Fadeev's, ...)
Additivity? Operational meaning?

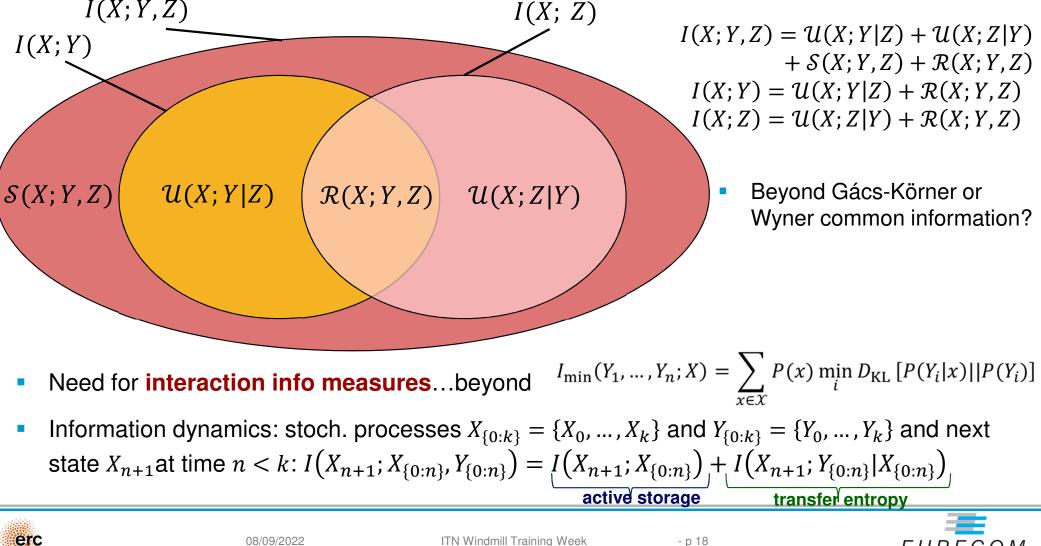


Time-dependent info measures ? (capturing instantaneous signal changes).

Information Dependencies

Multivariate Information Decomposition

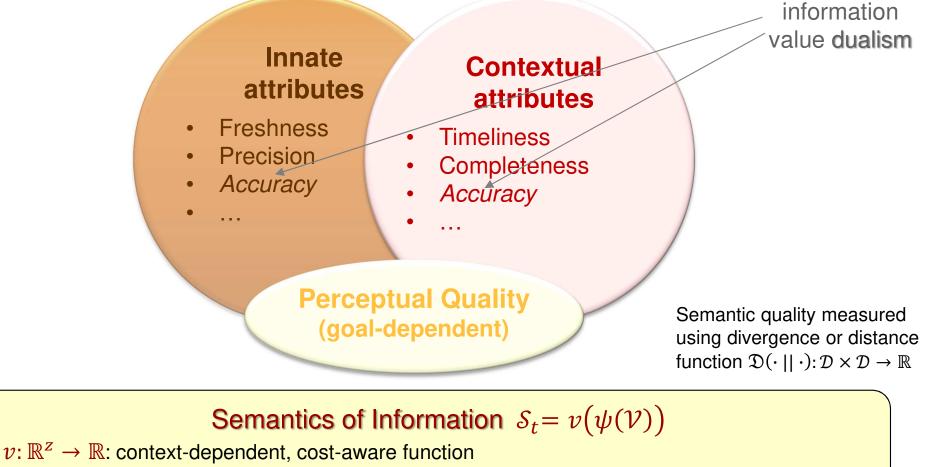
- Q: What is the information that two 'source' variables Y, Z carry about a third 'target' variable X
- Decompose total information into redundant (shared), unique and synergistic components.



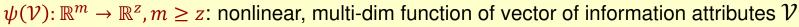
EURECOM

Defining Effectiveness & Data Importance

- Let $\mathcal{V} \in \mathbb{R}^m$ denote the vector of *m* attributes of information, decomposed into:
 - $\mathcal{I} \in \mathbb{R}^n$ innate/intrinsic (*objective* quantitative)
 - $C \in \mathbb{R}^{\ell}$ contextual/extrinsic (*subjective* qualitative)



 $n, \ell \leq m$



Semantics of Information

Semantics of Information (Sol)

$$\mathcal{S}_t = v\big(\psi(\mathcal{V})\big)$$

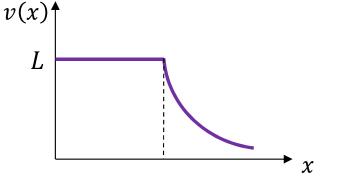
 $v: \mathbb{R}^{Z} \to \mathbb{R}$: context-dependent, cost-aware function $\psi(\mathcal{V}): \mathbb{R}^{m} \to \mathbb{R}^{Z}, m \geq z$: nonlinear, multi-dim function of vector of information attributes \mathcal{V}

A very simple example

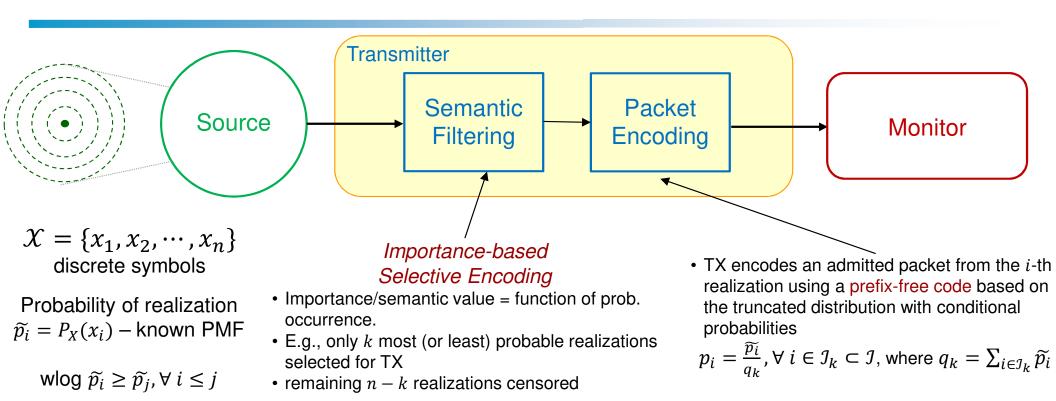
• Freshness (AoI): $\Delta_t = t - u_t$

 u_t : generation time of the newest sample that has been delivered at the destination by time instant t

- Accuracy (distortion): $\delta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$ e.g., $\delta(X_t, \hat{X}_t) = (X_t \hat{X}_t)^2$
- $\psi(x,y) = Kxy$, so $\psi(\Delta_t, \delta) = K(t u_t)(X_t \hat{X}_t)^2$
- Timeliness: $v(\Delta_t) = \max(L, Le^{-\Delta_t}), x \ge 0$



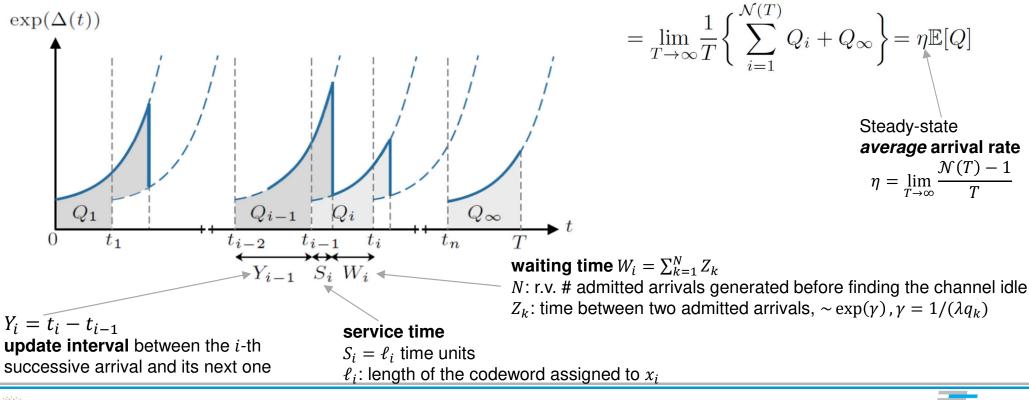
Aol (vanilla, nonlinear, Aoll,..), Vol, Qol,... can be seen as special cases of Sol



- Information source generates status updates (packets) and forwards them to a TX
- TX encodes the packets and sends them to a remote monitor (RX)
- i.i.d. sequence of observations
- Packets generated ~ Poi(λ)
- TX is bufferless
- Error-free channel

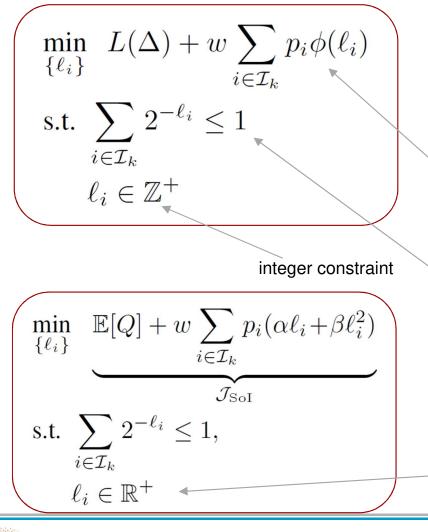
P. Agheli, N. Pappas, MK, "Semantics-Aware Source Coding in Status Update Systems", IEEE ICC'22

- Timeliness (Sol): $S(t) = g(\Delta(t))$ (time-varying stoch. process)
 - $g: \mathbb{R}^+_0 \to \mathbb{R}$ a non-increasing utility function of information freshness
 - Aol: $\Delta(t) = t u(t)$
- Average Sol for an observation interval (0, T): $\bar{S} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} g(\Delta(t)) dt$



"Optimal" Codeword Design

• <u>Aim</u>: Find the codeword lengths ℓ_i that optimize a weighted sum of the average Sol and the average length for a cost function $\varphi(\ell_i)$, i.e., $\sum_i p_i \varphi(\ell_i)$.



Maximizing avg. Sol \equiv Minimizing avg. cost/penalty of lateness

$$L(\Delta) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\Delta(t)) dt$$

 $f: \mathbb{R}^+_0 \to \mathbb{R}$ a non-decreasing function

$$\phi(x) = \alpha x + \beta x^2, \, \alpha, \beta \ge 0$$

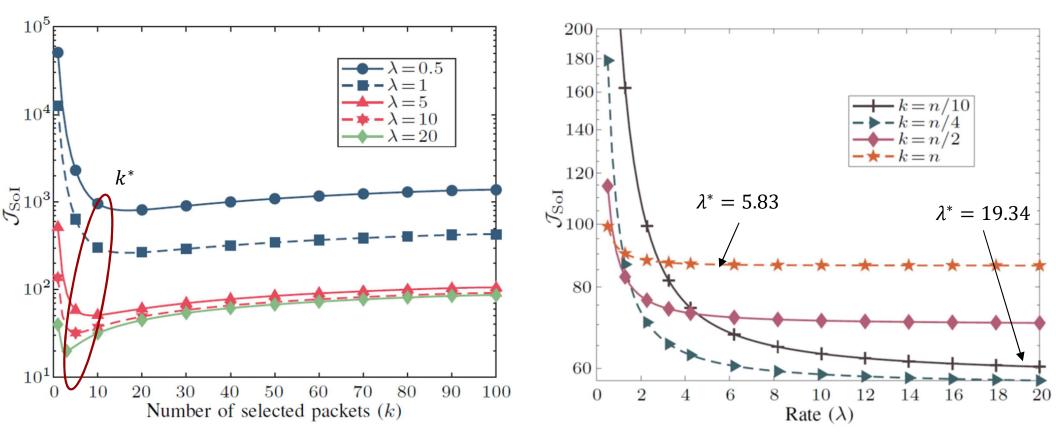
- Quadratic cost function for the codeword length under binary alphabetic
- φ convex: longer (shorter) codewords are penalized more (less) harshly than in the linear case (e.g., Huffman coding)

Kraft-McMillan inequality

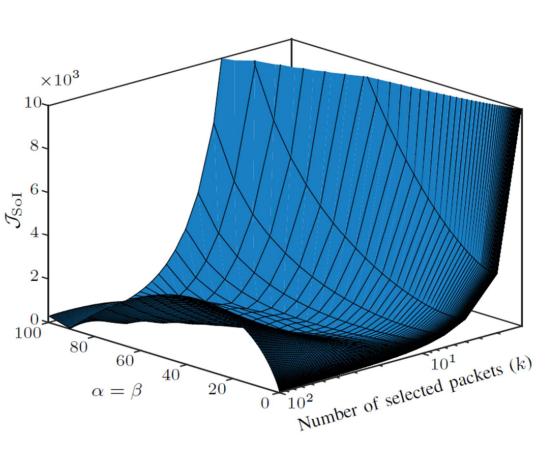
for the existence of a uniquely decodable code for a given set of codeword lengths

Relaxation: non-negative real valued codeword lengths

Zipf(*n*, *s*) distribution with pmf $P_X(x) = \frac{1/x^s}{\sum_{j=1}^n 1/j^s}$ $n = |\mathcal{X}| = 100$ and exponent s = 0.4s = 0 uniform, $\nearrow s$ "peaky distribution"



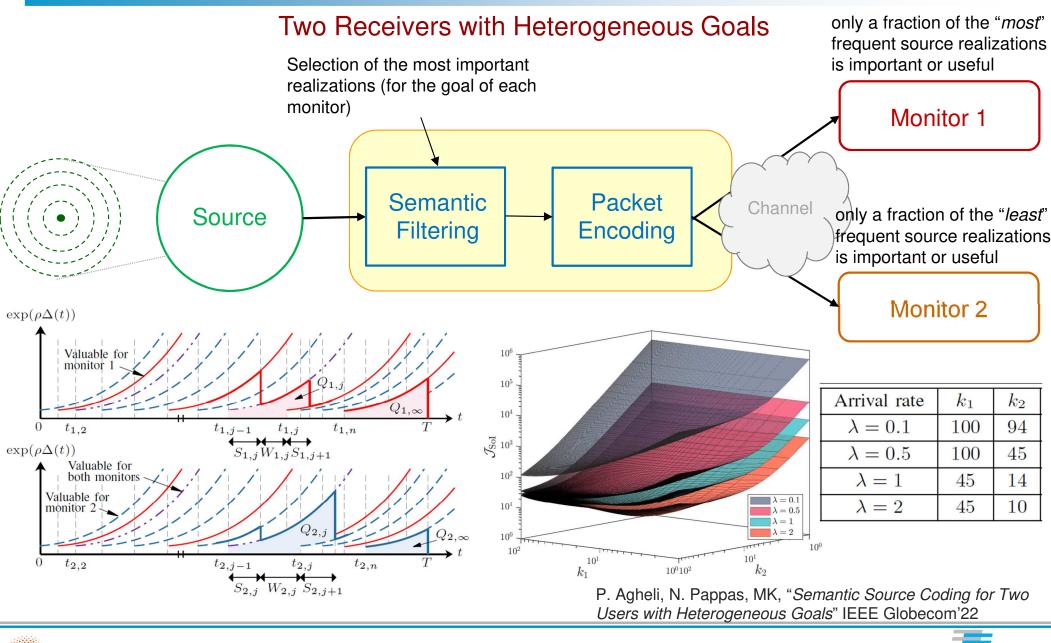
Interplay among Sol, semantic filtering (k) and codeword length



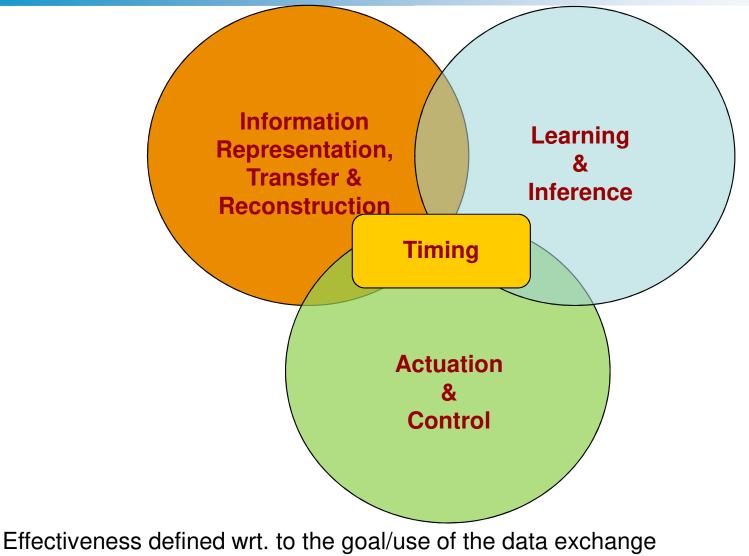
λ	k	$\alpha = \beta$	λ	k	$\alpha = \beta$
0.5	20	1.26	10	5	2.5
1	18	1.58	20	2	12.59
5	10	1.99	optimal parameters		

- Objective function continuously increases as cost parameters increase for small *k*
- For large *k*: increasing cost parameters causes the objective function to increase then decrease.
- Increasing the input rate (hence, decreasing k*), optimal cost parameters increase.
- When input rate is high: larger penalties for the codeword length must be assigned

Semantic Source Coding in Multiuser Systems



Redefining Effectiveness and Timing

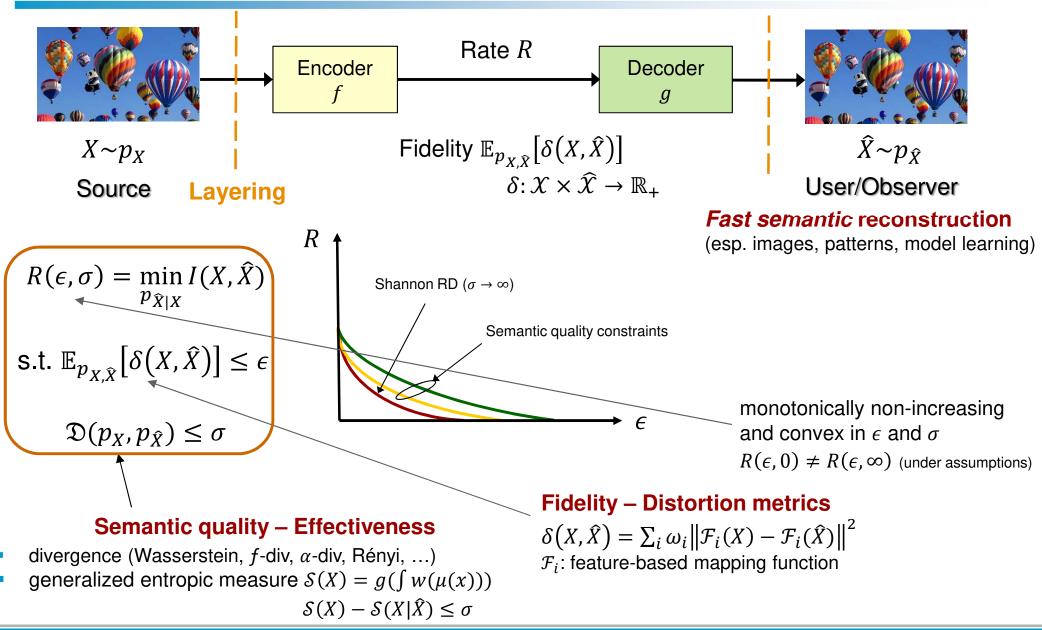


- Knowledge/side info about the observer's state is key
- Effectiveness is related to timing in different communication scenarios of the I

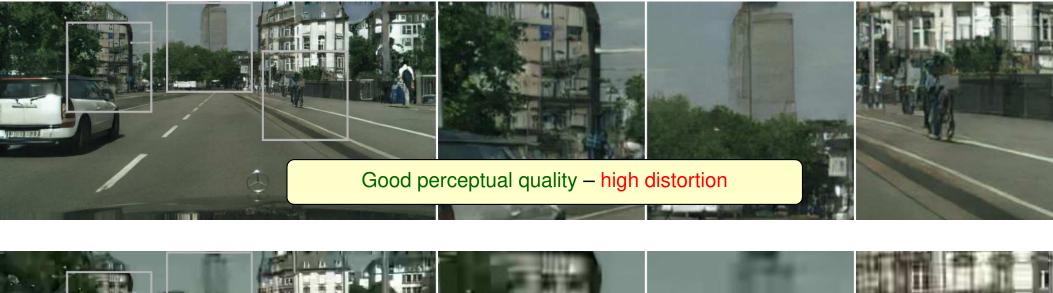
P. Popovski et al., "*A Perspective on Time Toward Wireless 6G,*" in Proc. of the IEEE, 110 (8), Aug. 2022

- p 27

Information Representation & Reconstruction



Semantic Quality

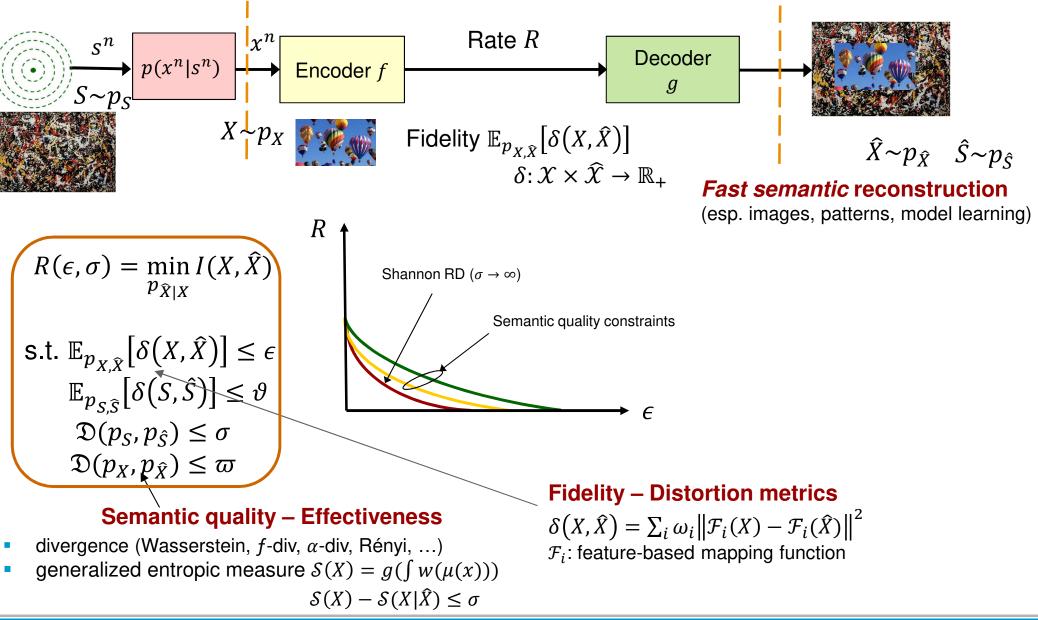


Good perceptual quality \neq low distortion

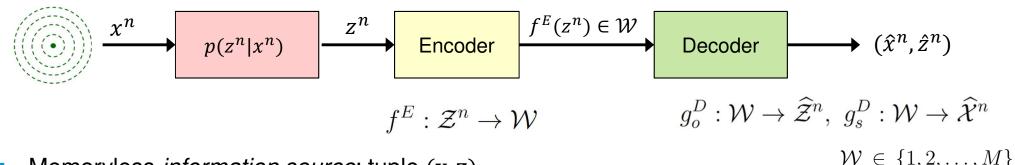
Agustsson et al. (2018)

EURECOM

Information Representation & Reconstruction



Goal-Oriented Communication: A Rate-Distortion Approach



Memoryless information source: tuple (x, z)

 $VV \in \{1, 2, \ldots, N\}$

with prob. dist. p(x, z) in product alphabet space $\mathcal{X} \times \mathcal{Z}$.

- x: semantic or intrinsic information of the source
- z: noisy observation of the source at the encoder side
- Semantic distortion function: $d_s: \mathcal{X} \times \hat{\mathcal{X}} \mapsto [0, \infty)$
- Observation/communication distortion function: $d_o: \mathbb{Z} \times \hat{\mathbb{Z}} \mapsto [0, \infty)$
- Average per-symbol distortions: $d_s^n(x^n, \hat{x}^n) = \frac{1}{n} \sum_{t=1}^n d_s(x_i, \hat{x}_i)$ $d_o^n(z^n, \hat{z}^n) = \frac{1}{n} \sum_{t=1}^n d_o(z_i, \hat{z}_i)$

What is the role of the *fidelity* criterion in a remote source coding problem with individual distortion measures?

Semantic Rate Distortion Function (SRDF)

Operational rates

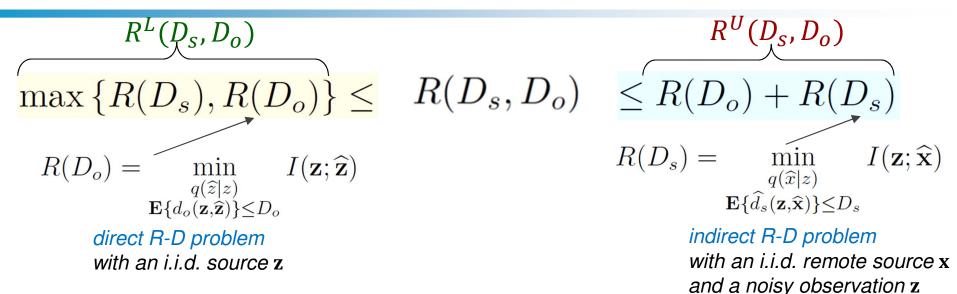
For a given p(x) and p(z|x), the SRDF is characterized as follows:

$$\begin{split} R(D_{s}, D_{o}) &= \inf_{\substack{q(\widehat{z}, \widehat{x} | z) \\ \mathbf{E}[\widehat{d}_{s}(\mathbf{z}, \widehat{\mathbf{x}})] \leq D_{s} \\ \mathbf{E}[d_{o}(\mathbf{z}, \widehat{\mathbf{z}})] \leq D_{o} \\ \end{split}} I(\mathbf{z}; \widehat{\mathbf{z}}, \widehat{\mathbf{x}}) &\triangleq \mathbf{E}\left[\log\left(\frac{q(\widehat{\mathbf{z}}, \widehat{\mathbf{x}} | \mathbf{z})}{\nu(\widehat{\mathbf{z}}, \widehat{\mathbf{x}})}\right)\right] \\ \mathbf{E}[d_{o}(\mathbf{z}, \widehat{\mathbf{z}})] \leq D_{o} \\ \end{array}$$

Functional properties

- $R(D_s, D_o)$ is a non-increasing function of $D_s \in [0, \infty)$ and $D_o \in [0, \infty)$ and (jointly) convex with respect to (D_s, D_o)
- $I(\mathbf{z}; \hat{\mathbf{z}}, \hat{\mathbf{x}})$ is a convex functional of $q(\hat{z}, \hat{x}|z)$ for a fixed p(z)
- If $R(D_s, D_o) < \infty$, then $R(\cdot)$ is continuous for $D_s \in [0, \infty)$ and $D_o \in [0, \infty)$
- Infimum is attained by a $q^*(\hat{z}, \hat{x}|z)$ (compact constrained set and lower semi-continuous wrt $q(\hat{z}, \hat{x}|z)$)
- P. Stavrou and MK, "A Rate-Distortion Approach to Goal-oriented Communication," IEEE ISIT 2022
- P. Stavrou and MK, "The Role of Fidelity in Goal-Oriented Semantic Communication: A Rate Distortion Approach," Techrxiv 20098970

Bounds and Conditions for Tightness



Tightness

- $R^L(D_s, D_o)$ is tight iff $\mathbf{z} \hat{\mathbf{z}} \hat{\mathbf{x}}$ and $\mathbf{z} \hat{\mathbf{x}} \hat{\mathbf{z}}$ are concurrently satisfied
- $R^U(D_s, D_o)$ is tight iff $\hat{\mathbf{z}} \mathbf{z} \hat{\mathbf{x}}$ is satisfied

General Result (Theorem)

$$R(D_o, D_s) = \max_{\substack{s_1 \le 0 \\ s_2 \le 0}} \min_{\substack{q(\widehat{z}, \widehat{x} | z) \ge 0 \\ \sum_{\widehat{z}, \widehat{z}} q(\widehat{z}, \widehat{x} | z) = 1}} \left\{ I(\mathbf{z}; \widehat{\mathbf{z}}, \widehat{\mathbf{x}}) - s_1 \left(\mathbf{E} \left[\widehat{d}_s(\mathbf{z}, \widehat{\mathbf{x}}) \right] - D_s \right) - s_2 \left(\mathbf{E} \left[d_o(\mathbf{z}, \widehat{\mathbf{z}}) \right] - D_o \right) \right\}$$

- Parametric solutions for $R(D_s, D_o)$
- Used for analytical expressions & generalized Blahut-Arimoto algorithm

Binary Alphabets

- $\left(p(x=0)\right) \quad \left(\alpha\right)$ Binary alphabets with individual Hamming distortions $\mathcal{X} = \mathcal{Z} = \widehat{\mathcal{X}} = \widehat{\mathcal{Z}} = \{0, 1\}$
- Rate-splitting bound is achievable: $R(D_{s}^{*}, D_{o}^{*}) = R^{L}(D_{s}, D_{o})$

$$\mathbf{s}^{\mathbf{p}(x)} = \begin{pmatrix} 1 \\ p(x=1) \end{pmatrix}^{\mathbf{p}(x=1)} = \begin{pmatrix} 1-\alpha \end{pmatrix}^{\mathbf{r}},$$

$$p(z|x) = \begin{pmatrix} p(z=0|x=0) & p(z=0|x=1) \\ p(z=1|x=0) & p(z=1|x=1) \end{pmatrix}$$

$$= \begin{pmatrix} \beta & \gamma \\ 1-\beta & 1-\gamma \end{pmatrix}$$

where $(\alpha, \beta, \gamma) \in [0, 1] \times [0, 1] \times [0, 1]$, $\beta \neq \gamma$ and $d_s(x,\widehat{x}) = \begin{cases} 0 & \text{if } x = \widehat{x} \\ 1 & \text{if } x \neq \widehat{x} \end{cases}, \quad d_o(z,\widehat{z}) = \begin{cases} 0 & \text{if } z = \widehat{z} \\ 1 & \text{if } z \neq \widehat{z} \end{cases}$

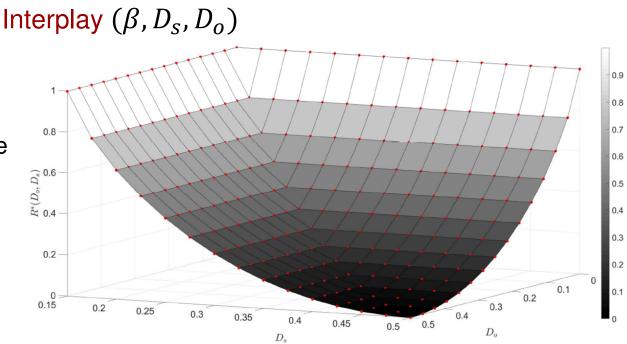
- Equiprobable semantic remote source (i.i.d. Bernoulli(1/2)) p(x = 0) = 1/2
- Binary symmetric channel with crossover probability $p(z = 0 | x = 1) = 1 \beta, \beta \in [0, \frac{1}{2})$

$$R(D_s^*, D_o^*) = \max\left\{ \left[1 - H_b(D_o)\right]^+, \left[1 - H_b\left(\frac{D_s - \beta}{1 - 2\beta}\right)\right]^+ \right\}$$

 $H_h(p)$: binary entropy function

EURECOM

Binary Alphabets



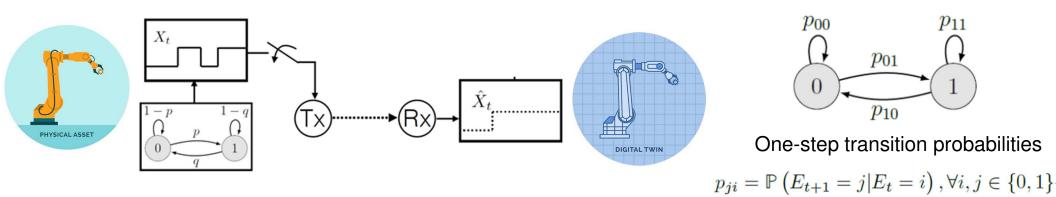
• If $D_o > \frac{D_s - \beta}{1 - 2\beta}$: beneficial to encode only the semantic information (subject to a Hamming distortion) therefore the rate is $R(D_s^*)$

 $R(D_s^*, D_o^*)$ for binary alphabets with an equiprobable semantic source and binary symmetric channel with β =0.15

• If $D_o < \frac{D_s - \beta}{1 - 2\beta}$: beneficial to encode the observable message (subject to its distortion) with rates $R(D_o^*)$.

• If $D_o = \frac{D_s - \beta}{1 - 2\beta}$: encoding either the semantic information or the observations does not offer any advantage for any value of the active distortion region.

Real-time Tracking



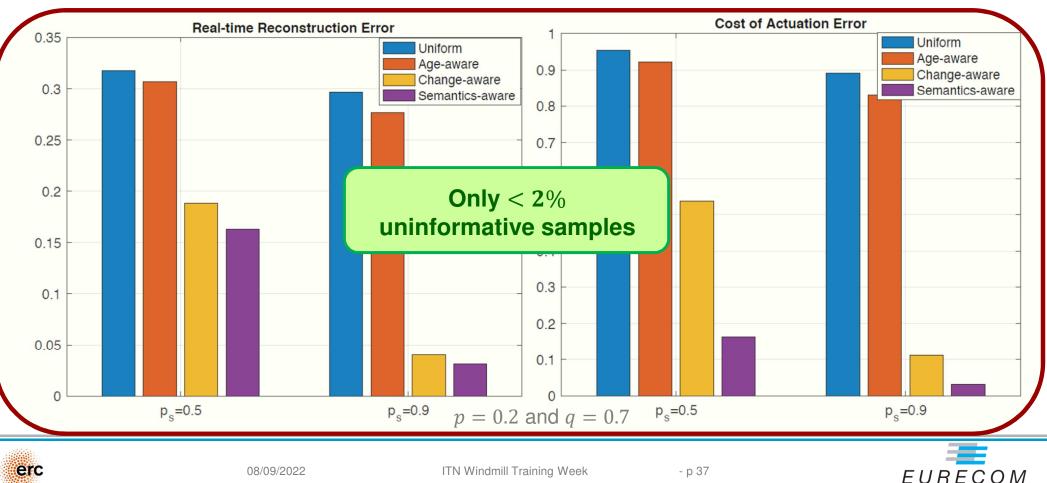
- E2E System: robot monitors a two-state discrete-time Markov source (DTMC)
- Source initiates actions to a robotic object (Tx side)
- Goal: real-time actuation of digital twin (Rx side)

MetricsReal-time reconstruction errorCost (penalty) of actuation error $E_t = \mathbbmath{1}\left(X_t \neq \hat{X}_t\right) = \left|X_t - \hat{X}_t\right|$ $\bar{C}_A = \pi_{(0,1)}C_{0,1} + \pi_{(1,0)}C_{1,0}$ $\bar{E} = \lim_{T \to \infty} \frac{\sum_{t=1}^T E_t}{T} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T \mathbbmath{1}\left(X_t \neq \hat{X}_t\right)$ $\bar{C}_{i,j}$: cost of being in *i* at Tx and $j \neq i$ at Rx
Non-commutative errors: $C_{0,1} \neq C_{1,0}$ N. Pappas and MK, "Goal-oriented Communication for Real-Time Tracking in Autonomous Systems," Proc. IEEE ICAS 2021

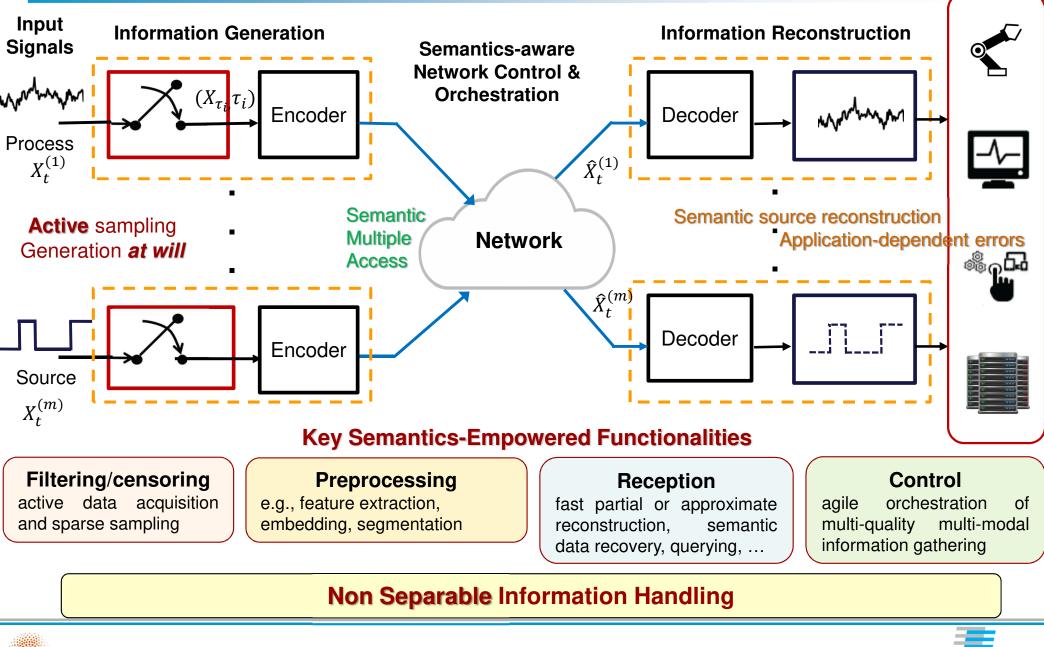
Synergetic Information Handling Gains

Goal-oriented Sampling and Effective Communication Policies

- Uniform: periodic, process-agnostic sampling
- Age-aware: sampling/transmission triggered when AoI exceed a threshold
- Change-aware: sample generation triggered at the Tx whenever a change at the source state is observed
- Semantics-aware: sample generation triggered whenever there is discrepancy between X_t and \hat{X}_t (change tracked at both Tx and Rx)



Goal-oriented Data Networking



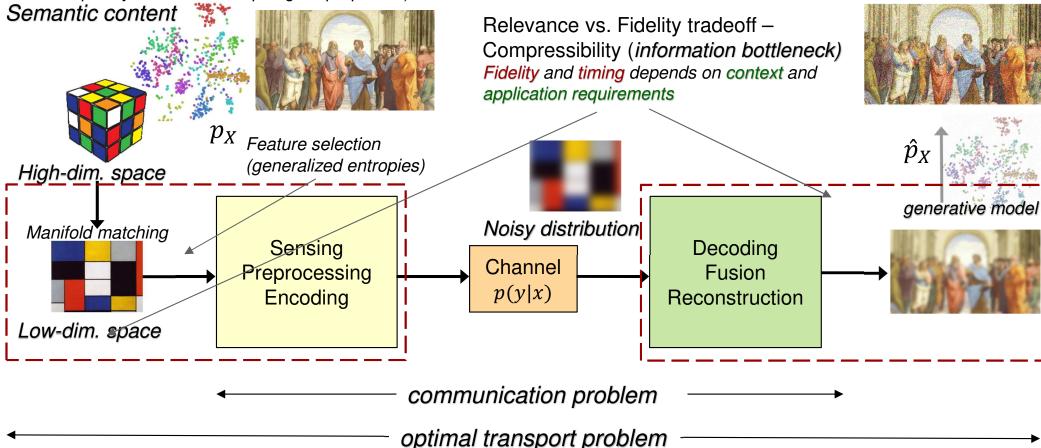
erc

08/09/2022

ITN Windmill Training Week

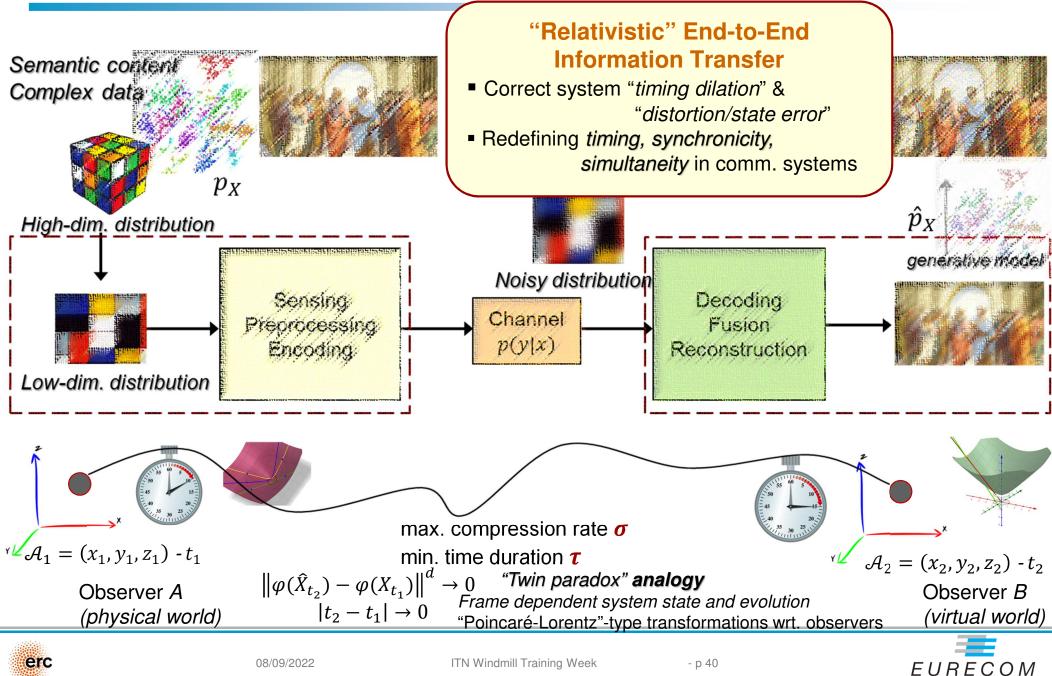
The Bigger Picture

Complex data (feature richness, algorithmic complexity of inference, topological properties).



- Communicating high-dimensional, multi-modal, multi-source rich data
- Intriguing connections with optimal transport, generative models, decision making, inference...
- Fundamental tradeoffs: communication-computation/learning, rate-distortion-perception, ...
- Information Manifold: rate distortion manifolds for extended/richer information spaces or sets/measures

How Soon is Now?



After the Dust Settled

Common Questions and Misconceptions

- Goal-Oriented Semantic Communication (GSC) is beyond, post, new,... Shannon theory
- Everything in GSC is new, unheard, radical, ...

... or this has been done X years ago \bigcirc

- GSC is a/the new 6G technology
- Where is the PHY in GSC?
- How is this different from End-to-End Learning for Communications
- ML/AI can solve all GSC problems and challenges?
- GSC is just JSCC (Joint Source & Channel Coding)
- GSC is just non-linear Aol (age of information)

Epilogue

- Supporting connected intelligence and autonomous, real-time systems in future wireless networks necessitates
 - fundamental theoretical advances
 - transforming prevailing communication design paradigms
- Effective Goal-oriented Communications: a paradigm shift ... not just hype!
- Grand Challenge: Goal-oriented *unification* of data generation/processing information transmission reconstruction
- Intriguing connections with learning, optimal transport, generative models, decision making ... & many fundamental tradeoffs!

scalability

- Promising gains: significant improvement in
 - network resource usage
 - energy consumption
 - computational efficiency

