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1. Introduction to Novel ML techniques for Wireless Net-

work Optimization

Machine Learning and Digital communications have fruitful history. When Neural Networks
have their second coming in the late 1980s, there were several papers in which fully con-
nected, wavelet neural networks, recurrent neural networks have been using for multiuser
detection and channel equalization, for example [2–6], but not limited to. These papers show
the interests of digital communication researchers in using the new technology to advance
in relevant problem in digital communications. Another, even more relevant example, is the
use of Belief Propagation for solving the all-relevant channel coding problem. David MacKay
rediscovered Low-Density Partity-Check (LDPC) codes in mid-1990s [7], which were origi-
nally proposed by Gallager in his PhD thesis [8]. They were later shown that Irregular LDPC
codes can achieve capacity for the Binary Erasure Channel (BSC) [9].
In this report, we have focused on two of the most promising techniques in machine learning
nowadays that can have an impact in the developments of communications networks, and
we have also worked on a relevant case study. First, Davit Gogolashvili has summarized
recent advances in reinforcement learning and especially deep reinforcement learning. Re-
inforcement learning has been a well-known technique, but with the combination of deep
NNs for designing the action-state models and the Q function it has opened many possi-
bilities. Reinforcement learning can be applied to many different aspects of optimization in
communication, from resource allocation in physical channels to network optimization.
In the second chapter, Shirin Goshtasbpour has introduced the new field of graph neural
networks. NNs have had an impressive improvement over the years because their structure
matched the type of data that they were trying to study. For example, convolutional filters are
well-suited for natural images and transformer and attention networks have been discovered
for texts data. Graph neural network generalizes those particular cases to any form of data.
Wireless commutation networks can be better expressed using graphs, especially those
deployed in the real world in which the hexagonal idealization is far from perfect. Graph
neural networks are the future to understand wireless communications.
Finally, Roberto Pereira has dedicated time to explain how to use kernel methods to opti-
mize massive MIMO systems. He has shown how complex kernel methods can be used to
understand mMIMO and has applied hierarchical clustering to improve the communication
networks.
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2. Reinforcement Learning

2.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reinforcement learning is an important area of machine learning with variety of practical
applications including dynamic channel allocation algorithms [10] [11] robot control, board
games such as backgammon [12],chess, go [13], elevator scheduling problems [14] and a
number of other problems (see [15–18]).
The general scenario of reinforcement learning can be described as follows: an agent in-
teracting with a dynamical environment have to learn behavior trough trial-and-error. Unlike
the supervised learning scenario, the agent doesn’t passively receive a labeled data set, he
collects information through a course of actions by interacting with the environment. The
objective of the agent is to determine the best course of actions to maximize long term ob-
jective. However, the information he receives from the environment is just immediate reward
with no future or long term reward feedback. So the main dilemma agent faces is to exploit
existing information about the environment or to explore unknown states and actions.
The remainder of this work is organized as follows. In section 2.2, we review basic facts
about Markov Decision Process. Section 2.3. is devoted to the problem of finding optimal
policy when the increment model is known. In section 2.4. we describe some model-free
algorithms based on stochastic approximation methods. In section 2.5. we mention few
challenges of modern reinforcement learning.

2.2. Markov Decision Process
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Markov decision process is defined as a triplet (S,A,P ′) where S is a set of countable states,
A is a set of countably many actions. For each pair (s, a) ∈ S × A we assign transition
probability measure P ′ over S × R which gives the probability of the next state and reward
being in some set C ∈ S × R provided that the current state is s and the action taken is a.
To emphasize dependency of the measure on (s, a) we use the notation P ′(· | s, a).
The transition probability measure gives rise to other important quantities related to the
environment. Most important ones are expected reward function r : S × A → R giving the
expected immediate reward received when action a is chosen in state s:

r (x , a) = E
[
R(x ,a)

]
,
(
Y(x ,a), R(x ,a)

)
∼ P0(· | x , a), (2.1)

and state-transition probabilities

P(s, a, s′) = P ′({s′} × R | s, a) (2.2)

which gives the probability of moving from state s to some other state s′ provided that action
a was chosen in state s.
In the standard reinforcement learning model, MDP was introduced to model the environ-
ment and interaction with the environment as follows: On each step of interaction n, the
agent observes the current random state Sn ∈ S and takes an action An ∈ A. In par-
ticular P (Sn+1 = s′ | Sn = s, At = a) = P(s, a, s′) holds for any s, s′ ∈ S, a ∈ A. Further,
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E [Rn+1 | Sn, An] = r (Sn, An) The action changes the state of the environment to Sn+1 ∈ S,
and the value of this state transition is communicated to the agent through a scalar reinforce-
ment signal, Rn+1 ∈ R. This transition to (Sn+1, rn+1) from state St after action An happens
with probability P ′(· | Sn, An). The agent then observes the next state Sn+1 and reward rn+1,
chooses a new action An+1 ∈ A and the process is repeated. The goal of the agent is to
choose actions that tend to increase the long-run sum of values of the reinforcement signal.
Mapping π which assigns probability distribution supported on the action space A to the
state s ∈ S is called policy. A policy π is deterministic if for each s, it assigns unique a ∈ A
with probability one. In that case, we can identify π with a mapping from S to A and use π(s)
to denote that action.
The agent’s objective is to find a policy that maximizes its expected reward. The return it
receives following a deterministic policy π along a specific sequence of states s0, ... , sT is
defined as follows:

T−1∑
t=0

γt r (st , π (st )) + I(T <∞)γT r (sT , π (sT )) .

where γ ∈ [0, 1) is a constant factor less than one used to discount future rewards.
The value function, V π : S → R, underlying π is defined as the expected reward returned
when starting at s and following policy π

V π(s) = E

[
∞∑
t=0

γtRt+1 | S0 = s

]
, s ∈ S.

A policy π∗ is optimal if its value is maximal for every state s ∈ S, that is, for any policy π and
any state s ∈ S, V π∗(s) ≥ V π(s). Underling value function V ∗ : S → R is called optimal value
function.
The state-action value function Q associated to a policy π is defined for all (s, a) ∈ S × A as
the expected return for taking action a ∈ A at state s ∈ S and then following policy π :

Qπ(s, a) = E

[
∞∑
t=0

γtRt+1 | S0 = s, A0 = a

]
(2.3)

= r (s, a) + E

[
∞∑
t=1

γtRt+1 | S0 = s, A0 = a

]
, s ∈ S, a ∈ A. (2.4)

The optimal state-action value function Q∗(s, a) at the state-action pair (s, a) is defined as
the maximum of the expected return under the constraints that the process starts at state s,
and the first action chosen is a. The underlying function Q∗ : S×A → R is called the optimal
action-value function.
The optimal value- and action-value functions are connected by the following equations:

V ∗(s) = sup
a∈A

Q∗(s, a), s ∈ S,

Q∗(s, a) = r (s, a) + γ
∑
u∈S

P(s, a, y )V ∗(y ), s ∈ S, a ∈ A.

Bellman’s optimality condition: A policy π is optimal iff for any pair (s, a) ∈ S × A with
π(s)(a) > 0 the following holds:

a ∈ argmax
a′∈A

Qπ
(
s, a′

)
.
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From Bellman’s optimality condition if follows that

π∗(s) = argmax
a∈A

Q∗(s, a), ∀s ∈ S.

Thus, the knowledge of the state-action value function Q∗ is sufficient for the agent to deter-
mine the optimal policy, without any direct knowledge of the reward or transition probabilities.
Similarly, knowing V ∗, r and P also suffices to act optimally.
Question we try to address is how to find V ∗ and Q∗.

2.3. Finding a Policy Given a Model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we assume that the environment model is known. In this section, we assume
that the environment model is known. That is, the transition probability P and the expected
reward r for all s, s′ ∈ S and a ∈ A are assumed to be given. Dynamic programming
techniques used to determine optimal policy will serve as the foundation and inspiration for
the learning algorithms to follow.
Let’s first find optimal value function V ∗. As we already know optimal value function is unique
and can be defined as the solution of the nonlinear system of equations

V ∗(s) = sup
a∈A

(
r (s, a) + γ

∑
s′∈S

P(s, a, s′)V ∗(s′)

)
, a ∈ A. (2.5)

Defining the Bellman optimality operator, T ∗ : R|S| → R|S|, by

(T ∗V )(s) = sup
a∈A

(
r (s, a) + γ

∑
s′∈S

P(s, a, s′)V ∗(s′)

)
, a ∈ A,

we can rewrite equation () compactly as

T ∗V ∗ = V ∗.

Given the optimal value we can spacify the optimal policy as

π∗(s) = argmax
a∈A

(
r (s, a) + γ

∑
s′∈S

P(s, a, s′)V ∗(s′)

)
.

2.3.1. Value iteration and Policy iteration

Value iteration seeks to determine the optimal policy by generating value functions iteratively

Vn+1 = T ∗Vn, n ≥ 0,

where V0 is arbitrary. Banach’s fixed point theorem 1 guarantees convergence to V ∗ at
geometric rate [19,20].

1To apply Banach’s fixed point theorem one needs to show that the operator T ∗ is a contraction mapping
from R|S| to R|S| in some norm, usually in ‖ · ‖∞-norm.
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The policy iteration algorithm manipulates the policy directly using policy evaluation, which
can be achieved by solving system of linear equations

V π(s) = r (s, a) + γ
∑
s′∈A

P(s, a, s′)V π(s′), a ∈ A.

Starting with an arbitrary action policy π0, the algorithm repeatedly computes the value of the
current policy π via that matrix inversion and greedily selects the new policy by maximizing
T ∗V π.
It can be shown that the policy iteration converges in a smaller number of steps than the
value iteration algorithm. But, value iteration is much faster per iteration since for the policy
iteration algorithm requires solving a system of linear equations, which is more expensive to
compute than an iteration of the value iteration algorithm.

2.4. Learning an Optimal Policy-Model-free Approach
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now let’s consider more realistic in practice scenario, when the environment model of an
MDP is unknown, that is we don’t know transition probability P and expected reward function
r . As was discussed earlier, finding the optimal value function is related to the fixed point of
operator T ∗ which is not directly accessible. Algorithmic methods adopted for this situation
are closely related to the concepts and techniques in stochastic approximation. Let’s first
introduce the following version of law of large numbers.
Theorem 1. Let X1, ... , Xn be i.i.d copies of random variable X, taking values in [0, 1]. Than
the sequence

µn+1 = (1− αn)µn + αnXn

converges to the expected value of X almost surely under the assumption 2 that

n∑
i=1

αi =∞ and
n∑

i=1

α2
n <∞.

2.4.1. TD(0) algorithm

The algorithm is based on the system of linear equations giving the value of a policy π

V π(s) = E [Rn+1 + γV π(Sn+1)|Sn = s] .

Motivated by the theorem 1 sequence we should construct in order to converge to the ex-
pectation above should be

Vn+1(s) = Vn(s) + αn(Rn + γVn(Sn+1)− Vn(s)).

The convergence of the algorithm can be proved using theorem similar to theorem 1 (ref).

2This assumption is known as Robbins-Monro condition.
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2.4.2. Q-learning

The Q-learning algorithm is based on the equations giving optimal state-action value function
Q∗:

Q∗(s, a) = E
[
Rn+1 + γmax

a′∈A
Q(Sn+1, a′)|Sn = s, An = a

]
The Q-learning rule is the same as TD(0) and is given by

Qn+1(s, a) = Qn(s, a) + αn(Rn+1 + γmax
a′∈A

Qn(Sn+1, a′) + Qn(s, a))

The techniques used in TD-learning and Q-learning are closely related to those of stochastic
approximation originated with the work of Robbins and Monro [21], followed by a series of
results including Dvoretzky [22], Kiefer and Wolfowitz [23]. For a recent survey of stochastic
approximation see [24] and the references therein. The connection with stochastic approxi-
mation was emphasized by [25,26], who gave a proof of the convergence of Q-learning. For
the convergence rate of Q-learning, consult [27]. For recent results on the convergence of
the policy iteration algorithm, see [28].

2.4.3. Dealing with Large State Space

In practice the number of states can be very large (or infinite) and it is not feasible to keep
a separate value for each state in the memory. Instead of storing the table of value function
one can use approximate value function Vθ(s) with the parameters |θ| much smaller than the
number of states. Most common representation of Vθ(s) is

Vθ(s) =
d∑

i=1

θiφi(s)

and is discussed in [29]. The case when φi(s) forms Fourier basis was introduce in [30].
Another popular function for approximation is artificial neural network (ANN) first used in
reinforcement learning is the work by Farley and Clark [31]. For the review of applications of
ANN in reinforcement learning see [32].

2.5. Challenges
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One critical challenge in RL is to design a reward signal [33] so that as an agent learns, its
behavior approaches what the application’s designer actually desires. The reward function
is another hyperparameter that has to be set at the start.
Another important challenge is to extend the capabilities of basic RL systems. Some of
the most dramatic results have been achieved by combining RL with other methods, such as
deep neural networks and Monte Carlo tree search. Bayesian Reinforcement Learning which
leverages methods from Bayesian inference extends the capabilities of basic RL systems in
important directions. Other extensions are perhaps more correctly viewed as enhancements
of the RL framework itself, as seen in the development of hierarchical RL, RL for partially
observable MDPs, and ways of handling continuous state and action spaces [34].
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3. Graph Neural Networks and Their Application in Wire-

less Communication

3.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In many applications, data can be naturally modeled in the form of a graph G = (V , E) where
V is the set of nodes or vertices and E is the set of edges with elements e ∈ E consisting
of tuples of graph vertices. Graphs are commonly used to model molecular connections in
chemistry or biology [35–37] or interactions in particle systems in physics problems [38,39].
In Natural Language Processing (NLP) it is prevalent to augment the text samples with de-
pendency trees and semantic roles and relations [40–42]. Mined data is often used in form
of knowledge graphs for few-shot or zero-shot learning [43–45]. User interactions in social
networks [46, 47] and their interests in recommender systems are also inherently modeled
with a set of nodes and edges [48]. It is easy to consider scenarios in wireless networks
where end-to-end connection or pointwise links in legacy or Software Defined Networks
(SDN) [49,50], service input-output relations in datacenters or Network Function Virtualiza-
tion (NFV) [51], network traffic routing [52,53], as well as allocation of resources to services
or users can be formulated as graph components [54–56].
In other cases where data is not inherently structured, it might be beneficial to extract struc-
tured data representation from the samples instead of latent representations that can only
make sense in regular Euclidean spaces. This can be viewed as enforcing a domain-expert
bias in the inference model to recover the most valuable information for a given task. For
example, in computer vision (CV) visual reasoning and semantic segmentation are two such
tasks where the state-of-the-art relies on extracting the relation of objects and pixels in the
images, respectively.Similarly, in NLP graphs are used to formalize various syntactic or adja-
cency dependencies between words and phrases in given texts or for the purpose of reading
comprehension and question answering.While, modeling wireless networks with graphs has
been popular for over two decades, structured inference has received little attention in com-
parison. However, it is reasonable to believe that with the booming use of Machine Learning
(ML) tools in wireless communication, these methods will also be adopted for compression
or network tomography.
The main idea behind Graph Neural Networks (GNN) is building a state transition system on
graphs by assigning state variables to nodes or edges and defining a state update rule for
each graph entity. Then iteratively apply the update rule until convergence of the values. For
instance, Interaction Networks (IN) encode each vertex or edge development in a dynamic
system with DNNs [57] whereas CommNets only used the 1-hop neighborhood of each
node to get the updated node states [58]. Visual IN (VIN) further combines IN architecture
with Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) for better
parameter sharing. The first two methods are not computationally efficient as the number
of parameters grows linearly with the number of nodes and edges in the input graphs. In
addition, it is not straightforward to extend these architectures to parse graphs with more
complex structures1 or have them process graphs with different number of vertices or of
varying degrees.

1Graph complexity is detailed in Section 3.2
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Although, RNNs and Feedforward Networks have higher expressivity, naive implementation
of these architectures assume a partial ordering in the inputed nodes of the graph and are
unable to engage all the information contained in a graphical structure efficiently. CNNs
on the other hand add to the model’s flexibility by learning multi-scale local spatial features
and their compositions, are permutation equivariant and were proven to generalize well to
undirected graphs and different graph scales.
Another application of parsing graph data is to learn low-dimensional euclidean vectors to
represent, compare or cluster graph structures, nodes, edges or subgraphs. Graph embed-
dings were first introduced in [59] in DeepWalk algorithm by passing the state of random
walks on sample graphs to the SkipGram model similar to the direct methods used for word
embedding extraction in NLP. Graph Auto-Encoder architectures, on the other hand, unify
the graph embedding and optimization task with higher flexibility [60].
The rest of this article is organized as follows: in Section 3.2 we describe different graph
types with their additional complexities. In Section 3.3 we explain the details of computa-
tional approaches and modules used in GNNs to deal with these structural diversities. The
common training objectives and optimization process of the GNNs are discussed in Section
3.4. Finally, in Section 3.5, we review GNN applications in wireless networks.

3.2. Graph types
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Graphs are unique non-Euclidean structures which can express entities and their relations
in a large number of systems in various areas. Based on the application, different graphs
can be used to express the data structure inducing an implicit bias on our model such as
partial ordering or relative importance or development progress of events in a system. Each
of these forms have different complexity level which manifests in form of constraints in the
optimization problem. The additional information in graph formalism can be used to achieve
better classification, clustering, or prediction at node, edge, subgraph or graph level. The
GNN model is designed accordingly to deal with the entailing complexities. Therefore, it is
important to find the correct graph type to represent the data in a given problem. We aim
to detail the differences of some of the more common graph types in this section which are
currently used or thought suitable for wireless system modeling.

Undirected vs. directed graphs

We denote an undirected graph with G = (V , E) where E = {(vi , vj) ∈ V 2|1 ≤ i ≤ j ≤ |V |}.
On the other hand, in a directed graph we have edges with orientation and E = {(vi , vj) ∈
V 2|i , j ∈ [|V |]} where the edge eij = (vi , vj) is directed from vi to vj . Directed graphs are
used to define partial ordering on the nodes and have a more elaborate definition for cycles,
cliques and connected components which all depend on the direction of the edges.

Hypergraphs

A hypergraphs is a generalization of a graph where each edge ei ∈ E connects n ≥ 2 num-
ber of nodes together. The edges in a undirected hypergraph are denoted with unordered
tuples ei = (vi1, ..., vin) for i = (i1, ..., in) and 1 ≤ i1 ≤ ... ≤ in ≤ |V | and in a directed hypergraph
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we denote the edges with ordered tuples. Hypergraphs can be used in formulation of groups
of users or workloads requesting a similar service or resource in the wireless network.

Homogeneous and heterogeneous graphs

In homogeneous graphs we assume the nodes and edges have the same type, while in
heterogeneous graphs we have nodes and edges of possibly different types. We denote
a heterogeneous graph with G = (V , E ,φ,ψ) where φ : V → N and is a mapping that
associates each node vi ∈ V with type φ(vi) and ψ : E → N is a mapping eij 7→ ψ(e)
that does the same for the edge eij ∈ E . In general, treating a heterogeneous graph as
a number of homogeneous graphs results in the loss of information about dependencies
between different edge and node types. Therefore, we need the GNN to account for the
types and process the heterogeneous graph globally. This structure can efficiently be utilized
to represent concurrent and different types of services and communication requirements in
a wireless network.
A meta-path is a substructure of graph which is constructed by denoting the type of nodes
and edges along a corresponding path in the graph. For example, a graph containing the
path v1

e13−→ v3
e35−→ v5

e52−→ v2 has a meta-path denoted by φ(v1) ψ(e13)−−−→ φ(v3) ψ(e35)−−−→ φ(v5) ψ(e52)−−−→
φ(v2). Augmenting the graph data structure with its meta-paths is investigated in [61,62].

Static vs. dynamic graphs

In general each of nodes or edges may have a weight, feature vector, or label assigned to
them. If the graph topology or the assigned values vary with time, the graph is called a dy-
namic graph. Unless the studied system is memoryless, the temporal information in dynamic
graphs should be regarded as the spatial information to allow the model to discern between
graph sequences which are different permutations of the same set of graphs. This is par-
ticularly useful aspect of spatio-temporal GNNs which enables them to model, for instance,
the time dependent characteristics of workloads wireless networks.
Dynamic graphs can be processed by first extracting the spatial information using GNNs and
then passing the model output to sequence models like RNNs [63,64]. Alternatively, we can
perform dynamic state message propagation by extending the existing propagation modules
to collect temporal messages [65,66].

3.3. Computational approaches
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As was mentioned before, the main idea behind GNNs is to put a state transition system on
the graphs and iteratively update the states until convergence. GNNs are typically composed
of four types of modules which we describe further in the following sections. In GNNs, these
modules are typically stacked together to form a high level representation of the graphs. A
general GNN architecture is depicted in Figure 3.1. Another method is to use Ordinary Dif-
ferential Equations (ODE) to define the state update operators resulting in continuous-time
GNN models. In ODE-GNNs we use numerical integrators instead of the backpropagation
through a finite number of layers to find the optimal parameters [67].
We use f (l) ∈ R|V |×M to denote the state of graph nodes with l indexing the layer.
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Figure 3.1: GNN architecture with propagation, sampling, pooling operators and skip con-
nections. Propagation module parameters are shared between the blocks in RNN based
GNNs and hidden state variables are passed to the next block along with the extracted fea-
ture. Some implementations omit sampling or pooling modules or skip connections. GNNs
generate node, edge or higher level embeddings depending on the application which is then
used classify or cluster the entities and train the parameters.

3.3.1. Convolutional propagation modules

Propagation modules are used to update the state information based on current state of the
corresponding entity and its k -hop neighbors. Common propagation modules are recurrent
operator, convolution operator and attention mechanism which are good in reusing model
parameters and finding frequent patterns in the data.
GNNs use a convolution operator that is the generalization of Euclidean convolution filters
to the graph domain.

Spectral convolution

Emerging from graph signal processing theory, many methods parameterize the spectral
form of the convolution filter to control the information propagation in the graph using Graph
Fourier Transformation (GFT) of the graph signal f (i.e. vector formed from mapping graph
vertices to real numbers). Let F be the GFT for graph G with normalized Laplacian L =
I|V | −D−1/2AD−1/2 where D is the degree matrix and A is the adjacency matrix of the graph.
Using the eigenvalue decomposition L = UΛUT for the diagonal ordered eigenvalue matrix Λ
and matrix of eigenvectors U, the Fourier transformation and its inverse applied on f̂ ∈ R|V |
is given by

F(f ) = UT f and F−1(f̂ ) = Uf̂

And the convolution operator with filter g : V → R is equivalent to

g ∗ f = F−1(F(g)�F(f )) = U(UT g � UT f )

where � denotes Hadamard product. Spectral ConvGNN define the convolution filters ĝθ =
UT g ∈ Rci×co in the spectral domain as a trainable set of parameters for ci input co output
channels [68]. The spectral convolution layer operation output for channel m is evaluated by

f (l+1)
m = σ

(
ci∑

n=1

(
g(l+1)
θ

)
m
∗ f (l)

n

)
= σ

(
U

ci∑
n=1

(
ĝ(l+1)
θ

)
m

UT f (l)
n

)
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ChebNet avoids the expensive eigenvalue decomposition by approximating the convolu-
tion filter using its truncated polynomial expansion with K Chebyshev polynomials Tk (x) =
2xTk−1(x)− Ti−2(x) with T0(x) = 1 and T1(x) = x [69].

g ∗ f ≈
K∑

k=0

θkTk

(
2L
λmax

− I|V |

)
f (3.1)

Coincidentally, ChebNet can extract K -hop localized features independent of the graph size
since the filters defined by Chebyshev polynomials are spatially localized. Graph Convo-
lution Network (GCN) introduces a first-order approximation of ChebNet with K = 1 and
λmax = 2 and considerably reduces the number of parameters simplifying (3.1) to

g ∗ f ≈ θ
(
I|V | + D−1/2AD−1/2) f

and proposes a renormalization trick to solve the exploding/vanishing gradient problem and
stabilize training. Several other works employ spectral parameterization of convolutional
filters. [70] extends ChebNet with complex Cayley polynomials. [71] uses wavelet transfor-
mations for fast computation of sparse localized information. In almost all of the spectral
approaches, filters need to be retrained for graphs with different structures.

Spatial convolution

We can define convolutional filters in the spatial domain based on the topological properties
of the entities. [35] propose Neural FP with different filters for nodes with different degrees
|Nv | where Nv = {u ∈ V |(u, v ) ∈ E or (v , u) ∈ E} is the of node v .

f (l+1)
v = σ

((
g(l+1)
θ

)
|Nv |

(
f (l)
v +

∑
u∈Nv

f (l)
u

))
Diffusion Convolutional Neural Network (DCNN) uses the power series of degree normal-
ized graph adjacency matrix to capture the effect of features in K -hop neighborhood [72].
PATCHY-SAN model extracts k neighbors for each node to propagate their information [73].
Learnable Graph Convolution Network (LGCN) uses max pooling on neighborhood features
to spread the top-k features in each iteration [74]. GraphSAGE performs aggregation on
fixed sized sampled features from the local neighborhood of nodes [75].

Self-attention mechanism

Attention based propagation assigns different weights for neighbors in the convolution oper-
ator. The Graph Attention Network (GAT) uses multi-head self-attention mechanism based
on similarity of the node states at every given iteration [76].

f̄ (l + 1)v = σ

( ∑
u∈Nv∪v

α(l+1)
uv g(l+1)

θ f (l)
u

)
α(l)

uv = softmax
(

NN((g(l)
θ f (l)

u ; g(l)
θ f (l)

v ))
)

Resulting state f̄ (l+1)
v is averaged or concatenated over different attention heads.
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Unifying frameworks

Multiple generalization frameworks are proposed to unify the ConvGNN models. Mixture
mOdel Network (MoNet) in [77] generalizes ConvGNNs by defining pseudo-coordinated on
neighbor pairs and assigning model weights to these coordinates. Message Passing Neural
Network (MPNN) defined messaging function M (l)

θ and update function U (l)
θ to propagate the

states at iteration l and evaluates graph embedding using pooling operation R [78].

f (l+1)
v = U (l+1)

θ (f (l)
v , m(l+1)

v )

m(l+1)
v =

∑
u∈Nv

M (l+1)
θ (f (l)

v , f (l)
u , wuv )

where wuv is the weight assigned to undirected edge euv .
Non-Local Neural Network (NLNN) generalizes the local state update and self-attention
mechanism with non-local separable operation

f (l+1)
v =

1
Z (l)

∑
u∈V

sθ(f (l)
v , f (l)

u )gθ(h(l)
u )

where sθ(f
(l)
v , f (l)

u ) is a scalar similarity measure between states of u and v and gθ(f
(l)
u ) is the

transformation of state of u [76,79].
Graph Network (GN) is the generalizes majority of ConvGNNs including MPNN, NLNN, In-
teraction Networks, CommNet, GGNN and so on by applying Graph block operations with
messaging, update, and state transformation steps.

3.3.2. Recurrent propagation modules

In recurrent GNNs state of the graph entities are updated by iterative application of the same
parametric function. With slight abuse of notation we denote this function with gθ. Also the
observed information about the states tv is gated using a parametric function oθ. Note that
here the state update functions are independent from iteration.
The model proposed in [80] uses the propagation operator

f (l+1)
v = gθ(xv , xEv , f (l)

Nv
, xNv )

t (l)
v = oθ(f (l)

v , xv )

where xv , xEv and xNv are three feature vectors associated with node v , its edges and 1-hop
neighbors. The matrix formulation of this update procedure results in a fixed point equation
system at convergence (i.e. when updated states (f (l+1)

v )v∈V = (f (l)
v )v∈V ) and by Banach’s fixed

point theorem has a unique solution (f (∞)
v )v∈V = (liml→∞ f (l)

v h)v∈V for contrastive mapping gθ
which can be evaluated with the fixed point algorithm in [81]. Graph Echo State Network
(GraphESN) is a special case of this model where fixed point solution is evaluated using
reservoir dynamics [82]. Iterative fixed point computations can be avoided by formulating a
constrained optimization problem as in Lagrange Propagation GNN (LP-GNN) [83].
Another extension to recurrent GNNs is to gate the information flow in each propagation step
by employing well-known gating mechanisms. Gated Graph Neural Network (GGNN) uses
GRU propagation units to aggregate messages from the neighbors [84] and GraphLSTM
model uses LSTM units on specific graph structures without the contractive update operator
limitation [85].
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3.3.3. Skip connections

Skip connections are used in combination to propagation modules to prevent the over-
smoothing and overfitting of the updated features in deep networks. As the GNN grows
deeper most of the local information of the entities are washed out by the aggregated neigh-
bor features, resulting in similar activations in the model output. Skip or gated connections
ensure that local information about each entity sufficiently changes the output of the model.
Highway GCN uses gating weights to apply the update function on state entity [86].

f (l+1) = p(l+1) � f (l)
v + (1− p(l+1))� g(l+1)

θ (f (l+1))

p(l+1) = σ(W (l+1)
θ f (l) + b(l)

θ )

Jump Knowledge Network (JKN) uses pooling and self-attention mechanisms to capture in-
formation from all the previous iteration states [87] and DeepGCN uses residual connections
and dense connections so establish gradient flow in deep GNNs [88].

3.3.4. Sampling modules

Sampling modules are used to improve the generalization of the models, prevent overfitting
and allow use of large scale graphs when the memory is not large enought to process them
at once. In these cases, sampling module acts similar to Dropout connections, however
operating on the inputs instead of the parameters.
Sampling can be performed in edge level, node level, of subgraph level. GraphSAGE per-
forms edge sampling to fix the number of processed neighbors for each node [75]. While
sampling may increase the generalization and allow training models over large structures, it
might be necessary to employ variance reduction methods for more stable training.
In layer sampling we consider only a subset of V for each iteration. FastGCN [89] uses layer
sampling with importance weights to propagate the information in the new graph structure.
ClusterGCN [90] and GraphSAINT [91] implement examples of subgraph sampling mod-
ules where, sample distribution is determined by clustering and entity-dependent weights
respectively.

3.3.5. Pooling modules

While propagation modules and sampling modules operate on a local level, pooling modules
provide global information about the topology of subgraphs and graphs. One approach to
combine entity information is to perform node-wise operations like max or weighted mean
operations [92, 93]. Other approaches use clustering [69, 77] and graph downsampling [94,
95] in graph’s spectral domain to extract the global features.

3.4. Training settings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Supervised settings involve training a model with pairs of graphs and target value and eval-
uating its performance on unobserved samples from the same distribution. Typical tasks in
a supervised learning environment include classification or regression where the goal is to
predict a discrete or real valued label for each unlabeled entity in a given graph and can be
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applied on graph nodes or edges or entire graph samples. Common losses used in this case
are categorical cross-entropy for discrete values and distance metrics for real values.
In unsupervised settings, the main objective is to find patterns in the graph distribution. For
instance, clustering of nodes, edges, subgraphs or graphs or matching graphs, prediction of
existence of edges or subgraphs with certain topology are tasks that we consider in unsuper-
vised learning. Another approach in unsupervised learning is to model the generative pro-
cess of graphs. Graph Auto-Encoders (GAE) assumes that each graph’s adjacency matrix is
generated from a low dimensional real latent variable with a simple DNN [60]. The posterior
on the latent variable is approximated with GCN and the model is trained with variational
inference where graph reconstruction quality is evaluated using matrix similarity metrics in
euclidean space. In [96] an adversarial training method is used for a similar generation
process. Alternative methods propose reconstruction of graph Laplacian [97] or pairwise
node similarity [98]. Contrastive learning is another successful unsupervised method where
the objective is to maximize the mutual information between graph representation and node
features in [99] or more complex substructures.
In semi-supervised settings, labels are only available for a small partition of data samples
and we intend to improve the prediction of the model using the structural information that we
can get from large amount of unlabeled samples. The optimization objective in this settings
is based on label prediction accuracy for labeled samples and reconstruction quality for
unlabeled ones. [100] and [101] are two studies tackling this setting for graph domain.

3.5. Wireless applications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Many network characteristics and applications can inherently be represented in form of
graph signals. Although, inference in large scale wireless networks with GNNs has not re-
ceived any attention in the past years, optimization of various resource allocation problems
within the network has benefited from this technology. In particular, one of the main attrac-
tions of GNNs in wireless networks is to find an approximate (locally optimized) resource
allocator with amortized cost when finding the exact optima is otherwise intractable.
[102] proposes to utilize GNNs to optimize the allocated power in a wireless system. A

K -user single access point environment with interference is modeled with a complete graph
with channel information denoted as its edge and node features. Optimal power control
scheme is approximated using the universality of GNNs and is learned by maximizing the
weighted average of users’ Signal to Inference + Noise Ratio (SINR) leveraging the permu-
tation invariance and robustness against wrong Channel State Information (CSI) provided
by the smooth GNN measures.
In [55], optimal power allocation problem with a set of transmitter and receiver pairs is solved
using GNNs. Communication links with fading channels are modeled with stochastic edges
in the graph and weighted rates are allocated to each pair by optimizing the dual problem of
power allocation exploiting the scalability of GNNs. Radio resource allocation in large scale
wireless network using MPNNs is also considered in [103] where it is proven to be effective
in optimal power allocation and beamforming tasks.
Authors of [50] study the optimal link scheduling problem in device-to-device networks with
imperfect CSI measurements. In their graph model, each connected pair is denoted with
a graph node, while the interference channels are the edges. The graph embedding is
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extracted based on only the device pairwise distances and the GNN model is trained along
with a classifier that selects the optimal link at every given scenario. The model parameters
are trained in supervised and unsupervised manner.
In [49], the authors propose RouteNet, an efficient model base on GNNs to estimate the end-
to-end connection performance metrics such as delay and jitter given the underlying network
topology, routing policy and instantaneous traffic. This model is used in Software Defined
Networks (SDN) to manage the routing devices more efficiently in comparison to heuristic
based methods and generalize the routing policies to unseen topologies. [52] extends the
GNN architecture in RouteNet to cover more complex network characteristics induced by
forwarding devices in the network and their queuing policies and service priorities.
Traffic optimization in datacenters is studies in the context of GNN models in [52]. Datacen-
ter services and requests are modeled in terms of a graph and the optimal Flow Completion
Time (FCT) scheme incorporating the centeralized information of the datacenter is parame-
terized with a GNN. Experiments show the effectiveness of GNNs in flow routing, scheduling
and topology management in the datacenter in comparison to traditional heuristics.
[54] uses the decentralized optimization capability of GNNs to enhance the robustness of the
network control and management policies in case of impairments in information exchange
among neighbor base stations. A new retransmission mechanism is proposed to conform
the message passing and propagation modules used in GNNs in wireless communication
systems.

3.6. Discussion and Conclusion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Graph Neural Networks are efficient and scalable tools that allow modeling structured data
present in many applications. Their success in embedding the topological information in
graphs promoted their extensive use in wireless communication systems as resource allo-
cation schemes and network performance predictors. While GNNs’ utilization in wireless
systems is spreading, it is important to take their challenges into consideration. GNNs as a
family of parametric models are vulnerable to adversarial attacks. They are commonly de-
ployed as black-box ML tools without an straightforward interpretability of their outputs. And,
most importantly, training and optimization of GNNs requires large datasets and so far has
been limited to simulation based datasets in wireless communication scenarios. Providing a
short overview of the existing literature and methods to model and process graph signals we
refer the curious readers to [104, 105] for more comprehensive reviews of GNNs and their
applications.
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4. Case Studies for Optimization in mMIMO

4.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multi–antenna radio access technologies are widely employed as means to enhance wire-
less communication spectral efficiency and connectivity. Space-division multiple access
(SDMA) has traditionally been used to enhance spectral efficiency in the uplink. In the down-
link, dirty–paper coding (DPC) achieves the channel capacity region by encoding the data at
the transmitter side in order to cancel interference at receiver side. Since, in practice, DPC
is difficult to implement, there has been intensive research on suboptimal solutions which
combine superposition coding (SC) and spatial processing. For instance, non-orthogonal
multiple access (NOMA) [106] has recently become a key mechanism to significantly en-
hance communication rates by allowing multiple users to superimpose their signals in the
time domain. The resulting interference is then processed at the receiver side using succes-
sive interference cancellation (SIC). Similarly, joint spatial division multiplexing (JSDM) [107]
and rate splitting [108] use precoding to separate transmissions into clusters of users, and
then apply the corresponding downlink processing to the resulting multiple–input single–
output (MISO) channels. In that sense, an important issue to be solved is to decide which
users should share the available resources to maximize the total performance. By partition-
ing different receivers into clusters, the system can take advantage of the spatial relationship
among different signals and reduce multi-user interference, especially when the number of
users is larger than the number of transmit antennas.
In the case where the number of transmit antennas is larger than the number of users to be
served, the authors of [107] propose a two–stage precoding scheme (JSDM) such that inter-
ference among different groups of users is canceled out. In the first stage, a precoding ma-
trix is designed according to the second-order statistics of each group. In the second stage,
the instantaneous channels of each user is considered to minimize interference within each
group. Later on, authors in [109] study two users clustering mechanisms. In both cases, the
main assumption is that users spanning a similar subspace should be clustered together.
Indeed, for a sufficient number of antennas, such assumption allows one to construct or-
thogonal precoding matrices based on the eigenvectors of the group channel matrix. In this
sense, the authors mainly try to associate users to a cluster center, either estimating it from
the data (k-means) or pre–fixing (fixed quantization) the groups’ subspaces.
In the same line of work, [110] trains a neural network to solve the multi–dimensional user
to cell assignment problem considering the users’ geographical location. Despite providing
large complexity gains when compared with traditional approaches, the method lacks on
scalability due to the fixed input–output dimensions. The impacts and advantages of user
pairing in NOMA downlink is investigated in [111]. As main results, the authors provide
an analytical study of how to pair users either according to fixed power conditions or user
fairness. As one would expect, in both cases, the channel quality of both users play a crucial
role.
More recently, rate splitting (RS) [108,112] has been recognized as possible leading mech-
anism to enhance communication in scenarios where we have imperfect channel state infor-
mation (CSI). The idea consists on splitting the messages intended for users into a private
W (p) and common part W (c). The common parts are encoded together into a common
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stream s̃(c) while the private parts s(p) are encoded separately. Users decode the intended
stream in a SIC fashion starting by s̃(c), the common part associated to all the users. In the
generalized RS, W (c) might consist of several layers, which could lead to complex implemen-
tations. With that in mind, [108] also proposes a 2–layer hierarchical RS (HRS) mechanism.
In this case, users are divided into G groups, each containing Kg users, resulting in the
transmitted signal described by x = p̃(c)s̃(c) +

∑G
g p(c)

g s(c)
g +

∑G
g

∑Kg
k p(p)

k s(p)
k . Notice that this

is in contrast with conventional multi–user linear precoding (MU-LP) [113], which considers
the residual multi–user interference as noise, and with NOMA, which would require users to
completely decode other users’ message. In order to compare these different approaches
(NOMA, MU–LP and RS), the authors in [112] analyse their multiplexing gains in the down-
link, considering both perfect and imperfect CSI. Results show that rate splitting performs
equally or better than other classical approaches.
All the techniques reviewed above somehow benefit from clustering users into groups. Mo-
tivated by the need of an analytical study of clustering mechanisms for distinct wireless
communication systems, we analyse two clustering algorithms. When there exist sufficient
degrees-of-freedom, it is reasonable that groups are formed by users which are close in
space, i.e., their AoA/AoD are close enough. However, since we are dealing with wireless
channels where multipath is present, it is reasonable to measure users proximity based on
how well aligned the subspaces spanned by their channel matrices are. Differently from
previous works [107, 109, 110] we are primarily concerned with case where the number of
antennas at the base station is smaller than the total number of receivers. Consequently,
zero–forcing (ZF) and other linear precoder mechanisms are not possible. Additionally, the
clustering algorithms discussed below allow for the comparison of subspaces of different
dimensions. This is relevant, for instance, when we need to cluster users that have number
of antennas.
We devote the following two sections to providing an account of the results that we have
obtained in the context of the Windmill project regarding the use of clustering methods for the
optimization of wireless networks. More specifically, in the next Section, we first consider the
use of spectral clustering as means to classify channels into clusters according to how well
aligned they are. In particular, we revisit kernel-based spectral clustering techniques based
on dimensionality reduction according to the eigenstructure of kernel proximity matrices. Our
contribution here has been on the study of the asymptotic spectrum of these matrix when the
observations are complex valued. In Section 4.3, we describe an agglomerative hierarchical
clustering of complex subspaces in which users are clustered according to the subspaced
spanned by their channel matrices. Our contribution here has been on the derivation of
a channel similarity measure, based on their subspace alignment, that allows to compare
clusters of channels with different number of elements.

4.2. Spectral Clustering of Complex Valued Data Using Kernel Methods
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Modern data science techniques use kernel methods as means to represent the data via
high dimensional nonlinear mappings. The introduction of kernel methods has spurred the
development of a number of non-linear extensions to classical machine learning linear algo-
rithms, which have been usually referred to as kernel methods [114]. For instance, kernel
methods enable us to perform clustering analysis in a higher dimensional feature space
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without actually having to do the expensive operation of projecting the data onto this space.
In the field of wireless communication, [115] shows that it is possible to tune spectral cluster-
ing techniques and do educated guesses on the choice of the kernel functions. To validate
their results, the authors tackle the problem of pilot contamination in MIMO wireless net-
works by means of user clustering. One of the major issues in broadly applying machine
learning techniques to telecommunications is the fact conventional ML methods traditionally
deal with real–valued signals while telecommunication signals are fundamentally complex
valued. In this sense, further investigation of kernel methods in large settings with complex
observations is of high relevance and has a direct applications into wireless networks.
The spectral behavior of different kernels matrices (i.e. the behavior of its eigenvalues and
eigenvectors) is of fundamental importance in order to determine the performance of the
corresponding learning algorithms. To the best of our knowledge, all of the available studies
focusing on the asymptotic behavior of kernel matrices are based on real valued observa-
tions. However, as we showed in [1], when the observations are drawn from a multivariate
circularly symmetric complex distribution, the empirical eigenvalue distribution of a kernel
matrix K converges almost surely to a limit that is different from the one obtained with real
valued inputs [116,117]. In other words, it is not possible to directly apply the results obtained
for real valued observations into the complex observations obtained in wireless systems.
To exemplify this idea, let’s consider the case where the kernel matrix K of size n × n has
entries

Kij =
1
√

p
k
(

xH
i xj√
p

)
δi 6=j

where xi is an independent circularly symmetric standard complex p–dimensional Gaussian
random vector1. In spectral clustering, the largest eigenvectors of matrix K are often used
as input to some vector quantization method (e.g., K-Means) in order to perform cluster-
ing. Moreover, xH

i xj measures the alignment between observations xi , xj . Unfortunately,
there exists no direct way of expressing this alignment in terms of the scalar product of the
corresponding real and imaginary parts. Thus, complex kernel functions cannot be derived
directly from its real–valued function counterparts.
In [1], we study the asymptotic eigenvalue distribution of the kernel matrix in the case where
x are complex observations, with p, n→∞, n/p → γ, 0 < γ <∞. We show that under some
assumptions on the probability measures of the real and imaginary parts of xH

i xj/
√

p, with
probability one, the empirical eigenvalue distribution of K converges weakly to a probability
measure ξ, uniquely determined by its Stieltjes transform m(z) =

∫
R

dξ
t−z for z ∈ C+ as the

unique solution in C+ (the upper complex semi–plane) to the following quartic equation

−1
m(z)

= z + γm(z)ω +
(

|α̃|2

1 + α̃γm(z)
+

|α|2

1 + αγm(z)

)
γm(z) (4.1)

where

ω =
∞∑

q,r=0

|aq,r |2 − |a1,0|2 − |a0,1|2

and where we have introduced the two complex coefficients

α =
1√
2

(a1,0 − ia0,1) and α̃ =
1√
2

(a0,1 − ia1,0).

1Admittedly, this is an overly simplistic model, but provides a first step that can be used to study the behavior
under more elaborate statistical models.
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(a) (b)

Figure 4.1: Comparison between eigenvalue histograms and asymptotic eigenvalue distri-
bution for different kernel functions built of real (a) and complex (b) observations. Extracted
from [1].

Moreover, the coefficients ak ,l are related to the complex expansion of the kernel function
k (z) with respect to the system of complex Hermite polynomials (see [116, Lemma 4.1]). A
detailed explanation of this proof is can be found in [1].
In contrast, for the case where K is built of real valued observations, its Stieltjes transform
m̃(z) is uniquely defined by the cubic equation

−1
m̃(z)

= z + γ
a2

1m̃(z)
1 + a1γm̃(z)

+ γm̃(z)
∑
k≥1

a2
k . (4.2)

Here the variables ak are again described according to [116]. In that sense, the solution
to (4.2) can be understood as a particularization of (4.1) – K built of complex observations.
Furthermore, the particularisation of both solutions to different kernel functions shows the
fact that the eigenvalue density behaves essentially differently in the real and complex valued
cases. Figure 4.1 illustrates the histogram of the eigenvalues obtained for n = 600 and
p = 1000 against the asymptotic eigenvalue density as established in (4.1) and (4.2) –
solid red lines. Observe that, despite the distinct behavior of the real and complex cases,
our method provides (in both cases) a very good approximation between the asymptotic
eigenvalue distribution and the empirical one. Notice that here we are only considering
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the case where the observations come from the same distribution, i.e., they all belong to
the same class. As we further explain in [1], the study of the support of the eigenvalue
distribution will be crucial to extend the current result to the case where the observations
follow a multi-class Gaussian mixture model.
The results described in this section provide a primary characterization of the analytical
behavior of complex kernel matrices. As previously discussed, this analytical study provides
the foundations for future studies of a number of kernel–based learning methods [115–117].
In that sense, the results in [1] provide us with initial tools to analyse and perform clustering
of network users based on their wireless channels.

4.3. Hierarchical Clustering in mMIMO Systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In previous section we have revised spectral clustering of single antenna users using kernel
methods. In this section we explore a more generic approach which allows us to perform
clustering of multiple–input multiple–output (MIMO) channels. Consider the scenario where
we have K user receivers, each equipped Nk antennas, and a base station (BS) transmitter
equipped with M antennas. We assume a separable Rayleigh model for the MIMO fading
channel (also referred to as Kronecker model), according to which the channel matrices are
independent among users and can be decomposed as

Hk = R
1
2
k GkT

1
2
k (4.3)

where Rk ∈ CM×M is the channel spatial covariance matrix at the BS and Tk ∈ CNk×Nk is the
channel spatial covariance matrix at the k th UE. These correlations are inherently dependent
on the scattering structure of the scenario, and in particular on the angles–of–arrival (AoA)
and angles–of–departure (AoD) of the multiple transmission paths. Moreover, the entries
of the M × Nk matrix Gk are assumed to be independent and identically distributed (i.i.d)
complex circularly symmetric Gaussian random variables, with zero mean and unit variance.
As mentioned before, in the line–of–sight case, it is possible to cluster users based only on
their AoA but when reflections and obstructions take place, this is no longer trivial. With that
in mind, we are interested in analysing the alignment of the subspace spanned by the users’
channel matrices. The Grassmann manifold is a common tool which provides a topological
structure to a set of subspaces [118,119].
Let Hj ,Hk denote the subspaces spanned by the columns of Hj , Hk respectively. Then,
for N = min(Nj , Nk ), the principal angles between Hj ,Hk induce several distance metrics
on the (complex) Grassmann manifold G(N, M), which provides a topological structure to
the set of all N–dimensional subspaces in a (complex) M–dimensional space [118–120].
The Grassmannian G(N, M) can be seen as the manifold built of the symmetric projection
matrices of size M × M and rank N [120]. In other words, we can represent the column
space of a full rank channel Hk as a point P̂k ∈ G(Nk , M), where P̂k is the projection matrix

P̂k = Hk (HH
k Hk )−1HH

k . (4.4)

Particularly, we are interested in the squared projection-Frobenius distance, which is defined
as

d2
PF(Hk , Hl) =

N∑
i=1

sin2(αk ,l(i)) = = N −
N∑

i=1

ˆλ(k ,l)
i = N − tr(P̂k P̂l) (4.5)
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Figure 4.2: Merging point in agglomerative hierarchical clustering where groups have equal
number of antennas, NI1 = NI2 = NI3 = 4. (a) Groups spread in the spatial domain and
their respective dendrogram connectivity. (b) behavior of the similarity measures for different
channel realisations of these groups.

where tr(·) denotes the trace of a matrix and αk ,l(i) the i th principal angle between the sub-
spaces Hi ,Hj . We refer the reader to [121] for a detail review in other metrics performed
in Grassmann manifolds. The main advantage of the distance in (4.5) with respect to other
metrics in this manifold is the fact that it can be computed without the need for eigendecom-
positions.
In summary, the above framework allows us to compare the column subspace spanned
by two distinct wireless channels Hk , Hj ∈ CM×N according to the distance between their
projection matrices P̂k , P̂j as elements of G(N, M). For simplicity, from now on we will instead
consider the similarity measure that follows from (4.5), namely

sk ,j =
1
M

tr(P̂k P̂j). (4.6)

Note that this measure is sufficient to describe the alignment between the two different
subspaces spanned by P̂i and P̂j .
We now have introduced the main concepts necessary to formulate an agglomerative hierar-
chical clustering. In this bottom up approach, the objective is to combine clusters according
to some similarity measure. This merging process continues until all clusters are merged
together or until clusters are no longer similar. The output of the algorithm is usually visual-
ized as a dendrogram. Often, an important design question is how to define if clusters are
similar or not.
In the context of wireless communication, a group is represented by the different users in the
network and the similarity measure between two clusters is defined as in (4.6). Initially, each
group is formed by a single user. Moreover, merging different users results in horizontally
concatenating their channel matrices. Let us exemplify this merging process in some specific
scenario. Figure 4.2a illustrates a merging point in the hierarchical algorithm where all the
clusters have the same number of antennas, i.e., NI1 = NI2 = NI3 = 4. We are interested
in merging either [I1, I2], [I1, I3] or [I2, I3]. Moreover, we assume that I1 and I2 have
the same spatial covariance matrix at the receiver side and, therefore, belong to the same
cluster. Also, I3 has a different spatial covariance matrix. In other words, RI1 = RI2 and
RI2 6= RI3.
In this scenario, the similarity measure should be higher between [I1, I2], so that we should
in principle have s1,2 > s1,3 and s1,2 > s2,3. Indeed, by comparing different realisations of
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users’ channels (blue histograms in Figure 4.2b) we notice that s1,2 is always higher than all
the other comparisons. In Figure 4.2b, observe that because NI2 = NI1 and R1 = R2 also
s12 ∼ s23, i.e., they have the same distribution. Moreover, the solid black line represents
the similarity measure’s expected behavior2 whenever i th and j th groups are drawn from the
same distribution, i.e., it represents the probability density function of the statistic si ,j under
the null hypothesis Hnull(i , j) : Ri = Rj . We emphasize that if the histogram is on the left–
hand side of the expected distribution, then there exists certain evidence that the two groups
should not be merged, e.g, in the case of s2,3 and s1,3.

s12

s13

0.1 0.3 0.5 0.7 0.9

s23

(a)

ŝ12

ŝ13

-60 -45 -30 -15 0

ŝ23

(b)

Figure 4.3: behavior of similarity measure for groups of different dimensions before (a) and
after (b) normalization with respect to the null hypothesis.

Next, let’s now consider the scenario where the total number of antennas are distinct among
the different groups. In this case, we have that PI1 ∈ G(NI1, M), PI2 ∈ G(NI2, M), PI3 ∈
G(NI3, M) and

G(NI1, M) 6= G(NI2, M) 6= G(NI3, M). (4.7)

Therefore, in this new scenario, the measures s1,2, s2,3 and s1,3 are no longer comparable.
Figure 4.3a represents the same results as in Figure 4.2b but for the case where NI1 =
4, NI2 = 24 and NI3 = 32. Based only on the similarity comparisons, one would wrongly
conclude (I1, I3) to be the merge of choice.
Notice that from the definition (4.5) that whenever Ni 6= Nj then only the first min(Ni , Nj)
principal angles are considered. In this sense, comparisons between large clusters might
lead to higher similarity than comparisons between a small and a large cluster. This might
happen regardless of the true group assignment. In fact, in this new scenario, even tough
s1,2 follows the expected behavior Hnull(1, 2), the highest similarity happens between clusters
I2 and I3.
There are a few existing proposals for estimating the distance between subspaces of differ-
ent dimensions – containment gap [122], symmetric directional [123], distance and Schubert
varieties [124], to name a few. We argue that one could also take a more statistical approach
and standardize the similarity si ,j measure with respect to its expected behavior Hnull(i , j)
which can be established in the asymptotic regime of large antenna systems. As a result,
we obtain can obtain a re-normalised metric ŝij which follows a Gaussian distribution with

2We have studied the asymptotic distribution and derived a close form expression for this distribution, but
do not provide details here to keep the exposition as simple as possible.
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zero mean and unit standard deviation whenever Hnull(i , j) holds. Figure 4.3b exemplifies
this case when comparing I1 and I2 in ŝ12. In the cases where two clusters have different
spatial covariance matrices – e.g., (RI1, RI3) and (RI2, RI3) – their normalised similarities –
ŝ13 and ŝ23, respectively – are moved far away from the standard normal distribution. As a
conclusion, notice that in this normalised metric space, groups that have the same covari-
ance matrix at the receiver side will always have higher similarity than groups with different
covariance matrices. Therefore allowing the comparison of clusters with distinct number of
users.
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p. 58âĂŞ68, Mar. 1995.

[13] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419,
pp. 1140–1144, 2018.

Dissemination Level: Public. Page 29



H2020 Grant Agreement Number: 813999
Document ID: WP3/D3.2

[14] R. Crites and A. Barto, “Improving elevator performance using reinforcement learning,”
in Advances in Neural Information Processing Systems (D. Touretzky, M. C. Mozer,
and M. Hasselmo, eds.), vol. 8, MIT Press, 1996.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT
Press, second ed., 2018.

[16] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. USA: John Wiley & Sons, Inc., 1st ed., 1994.

[17] C. Szepesvari, Algorithms for Reinforcement Learning. Morgan and Claypool Publish-
ers, 2010.

[18] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning. The
MIT Press, 2012.

[19] R. Bellman, Dynamic Programming. Dover Publications, 1957.

[20] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models. USA:
Prentice-Hall, Inc., 1987.

[21] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals of Math-
ematical Statistics, vol. 22, no. 3, pp. 400 – 407, 1951.

[22] J. H. Venter, “On Dvoretzky Stochastic Approximation Theorems,” The Annals of Math-
ematical Statistics, vol. 37, no. 6, pp. 1534 – 1544, 1966.

[23] J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Maximum of a Regression
Function,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462 – 466, 1952.

[24] H. Kushner, “Stochastic approximation: a survey,” WIREs Computational Statistics,
vol. 2, no. 1, pp. 87–96, 2010.

[25] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-learning,” Mach.
Learn., vol. 16, p. 185âĂŞ202, Sept. 1994.
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