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1. Introduction

This Windmill intermediate report is Deliverable 5.2 of Work Package 5 (WP5), which de-
scribes our research efforts on the application of ML techniques to RRM problems. The
novel techniques described in this report take the form of algorithms to solve various RRM
challenges in wireless systems, and are typically executed at layers 2 and above.
WP5 of project Windmill has focused on the following mixture of fundamental and practical
problems in wireless networks:

• RA

• Latency optimization

• Data routing in airborne networks

• Protocol learning

• Anomaly detection in sensor networks

Many of these problems can be formulated as sequential decision making tasks, where the
solutions entail actions taken in a stepwise manner. Those problems can profit from ML
techniques based on Reinforcement Learning (RL), which train models that improve over
time through interaction with the network. Other problems, such as anomaly detection in
sensor networks, do not require sequential decisions and are more related to Operations,
Administration, and Maintenance (OAM), as well as to network monitoring. To address this
type of problems, the more classical ML techniques (supervised, unsupervised and semi-
supervised learning) are typically used.
Chapter 2 describes our efforts in finding an efficient transmission strategy for slotted RA in
mMTC networks. Starting in 5G, new communication use cases have emerged. mMTC is
one of them and it brings new requirements on latency and signaling overhead. In chapter 2,
we describe how to adapt the DQN algorithm to a multi-user mMTC system to learn a trans-
mission scheme that maximizes bitrate and minimizes delay. We discuss the performance
this method can achieve, its limits and the remaining open questions.
Chapter 3 deals with the problem of Age of Information (AoI) minimization, which is rele-
vant for the transmission of time-sensitive information. Mission-critical communications (e.g.
telecommand, real-time monitoring, etc) is a good example of systems that could profit from
innovations along these lines. We address this problem via Proximal Policy Optimization
(PPO), which is a RL method characterized by its high sample efficiency (i.e. less data is
needed to train the model). In chapter 3, we present the system model (a 5G network),
describe our algorithmic proposal and discuss its results.
Chapter 4 addresses the packet routing challenges of Flying Ad-Hoc Networks (FANETs).
These are airborne wireless networks, where each UAV carries a traffic router. The con-
tinuous movement of these airborne routers changes the performance of the UAV-to-UAV
wireless links and therefore, also of the network topology. There is therefore a need for
reconfigurable multihop routing algorithms. In chapter 4 we present two complementary
solutions to this problem: A centralized multipath routing scheme, and a Deep Q Learn-
ing (DQL)-based algorithm for route selection based on the UAVs position and mobility.
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In addition to the use cases introduced by 5G, it is not possible to know what new com-
munication needs will emerge in the next decades. In 2019, few telecom experts would
have considered screen-sharing to be an important communication use-case. However, the
COVID19 pandemic and the growth of teleworking put this type of traffic at the forefront of
communication needs. To avoid having to redesign our communication protocols every time
a new use case comes up, in chapter 5 we explore an automated way of emerging new
protocols. The used technique is Multiagent Reinforcement Learning (MARL) and in this
chapter we present early results on this ambitious goal.
Finally, chapter 6 addresses Internet of things (IoT) and Wireless Sensor Networks (WSNs)
based on Long Range Wide Area Network (LoRaWAN). The focus is on performance moni-
toring, which is relevant for large networks and in this chapter we describe the relevant key
performance indicators (KPIs) to be monitored, as well as the network data collection mech-
anism. To facilitate data interpretation, we also present a dashboard for data visualization
and introduce the anomaly detection method.
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2. Deep Reinforcement Learning for Random Access

In future communication networks such a 5G and beyond, mMTC demands novel RA proto-
cols that have a low signaling overhead and that can adapt to sporadic traffic characteristics
of Machine Type Communications (MTC) networks. In this report, we present our initial in-
progress work towards designing ML-based RA protocols for mMTC. We show the potential
of RL for dynamic RA in wireless networks. We use a Deep Reinforcement Learning (DRL)
algorithm called as DQN for slotted RA to design a transmission policy that provides a bet-
ter performance in terms of throughput, delay and fairness as compared to the baseline
techniques. We present our initial RL environment for RA and we proposed average age of
packet (AoP) as a metric to measure the fairness of the system.
The ALOHA-based RA techniques are particularly well-suited for MTC due to its design flex-
ibility and low signaling overhead. For this reason, we consider collision resolution schemes
used for slotted ALOHA as our benchmark schemes in this work and we compare the per-
formance of our proposed solution we these techniques.

2.1. Benchmark
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The ALOHA protocol was proposed in 1970 by N. Abramson [1] as a medium access control
(MAC) procedure in random access (RA) channels, in which a pool of users attempt to trans-
mit packets over a common medium in an uncoordinated fashion. As a variant of ALOHA,
Slotted ALOHA operates on discretized time, in that time is divided into slots (whose dura-
tion matches a packet length) and transmissions need to be synchronised at slot level [2].
However, these protocols incur packet collisions and make the system unstable if there is no
sophisticated procedure applied to resolve them. Commonly used techniques are random
backoff schemes such as exponential backoff (EB) for collision resolution in order to avoid
low throughput and excessive delays. These techniques use a binary or ternary feedback
from the receiver to adjust the transmission probabilities of the users [3,4]. In a binary feed-
back system, the receiver informs the transmitters whether the transmission has resulted in
collision or not, while in ternary feedback, the receiver informs whether the transmission was
success, collision, or idle (no one transmitted on the channel).
In EB, each user backoff exponentially after each consecutive collision. Widely used stan-
dards such as Ethernet LAN, IEEE 802.3 or IEEE 802.11 WLAN, have adopted such backoff
mechanisms. For instance, the binary exponential backoff (BEB) has also been considered
in [5,6]. However, these backoff techniques show different performances under different as-
sumptions for various system models considered in the literature. For instance, it is common
for analysis to assume that the packet queue of each user is full, and this is called as satu-
ration state of the system. Moreover, under different assumptions of packet arrival process,
the performance of backoff technique is varying. A commonly used stochastic process to
model traffic arrivals is Poisson process for which BEB works well. Recently, it has been
shown in [7, 8] that BEB may not be a better choice. For these reasons, the performance
of EB schemes and which scheme is better, is still an challenging question. Moreover, the
assumption of users in saturation state is not applicable to the MTC networks and the as-
sumption of Poisson process for packet arrivals is not realistic for these systems. Nonethe-
less, due to simplicity of this protocol and distributed nature, slotted RA is well-suited for
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MTC paradigm for medium access, and for this reason we consider these schemes as our
benchmark. However, due to the above-mentioned complexities involved, ML-based tools
are required to design transmission policies for slotted RA.
Recently, RL has attracted much attraction in wireless community to design multiple access
problems [9–11]. These works consider multiple user and multiple channel systems, and do
not provide insights about single channel system and how the transmission probabilities can
be learned to improve delay and fairness in slotted RA. In [12], a heterogeneous environ-
ment with ALOHA and Time Division Multiple Access (TDMA) is considered to learn both
schemes by users. In [9,13], ALOHA-Q protocol is proposed an RL-based scheme for a sin-
gle channel system but their technique depends on the frame structure and each user keeps
and updates a policy for each time slot in the frame. Moreover, all of the above mentioned
works assume users to be saturation state, i.e, users always have a packet in their queue.
This assumption is not feasible for MTC networks where the traffic is sporadic and user may
or may not have a packet in its buffer. Therefore, to design such a problem, RL algorithms
seem to be a valid choice.

2.1.1. Progress and Contributions

In this work, we have leveraged DRL to design channel access and transmission strategy
for slotted RA for a single channel.

• We design a RL environment for our system model that is based on binary broadcast
feedback to all users aiming for reduced signaling. We use previous action and feed-
back to learn the transmission probability and our simple setting allows us to analyze
the learning process of RL for channel access.

• We use the DQN algorithm to learn a single transmission policy by training the al-
gorithm in a centralized way, and this policy is used in a distributed way during the
evaluation phase.

• We do not consider users to be in saturation state as opposed to the previously men-
tioned works, which is a realistic assumption for MTC networks.

• For simplicity, we consider Poisson process for packet arrivals, but our scheme is not
dependent on Poisson process.

In the next sections, we present the progress that has been made so far from designing a RL
environment for learning the transmission strategy for slotted RA to some results we have
achieved compared to some baseline EB schemes.

2.2. System Model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We consider a synchronous slotted RA system with N number of users, a single channel
that is shared among all the users and one receiver. The time is divided into discrete slots
as in slotted ALOHA. The channel is assumed to be error-free, i.e., if a user successfully
transmits a packet without colliding with other users, the receiver receives the packet with
no error. We assume that each user stores packets in its buffer denoted by Bn(k ), and users
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can store maximum B̄ packets in their buffers. If new packets arrive at the buffer when the
buffer is full, i.e., Bn(k ) = B̄, these packets are discarded and are considered lost.
At every time slot, user receives new packets following Poisson process with average arrival
rate λ. In order to transmit these packets, a user n can take two actions, An(k ) ∈ {0, 1},
where An(k ) = 0 corresponds to the event when user n chooses to wait and not transmit,
and An(k ) = 1 corresponds to the event when user n transmits a single packet on the shared
channel. We consider that if only one user transmits on the channel, the transmission is
successful; and if two or more users transmit in the same time slot, the collision happens.
The collided packets are discarded and need to be re-transmitted by all the users until they
are successfully received by the receiver.
At the end of each time slot, the receiver sends a feedback signal to the users. We assume
a broadcast channel where the feedback is sent to all the users. For reduced signaling
overhead, we consider a binary feedback signal that specifies whether the collision occurred
in time slot k or not, i,e.,

F (k ) =

{
0 if two or more users transmit
1 otherwise.

(2.1)

When packets collide, the feedback is 0, and if there was success or no user transmitted on
the channel, the feedback is 1. This feedback signal is used to update the buffer Bn(k ) of
each packet. If user n transmitted successfully, the packet is deleted from it buffer.
After each user takes action and receives feedback, we use this information to create history
Hn(k ) at each user. We assume that each user can keep a record of its own history. The
history tuple contains previous actions, feedback signals and buffer size for up to Th past
time instants, where we refer to Th as the history length. We will leverage this history for
training the DRL algorithm to design a RA policy. We are interested in a transmission policy
that can effectively provide us better performance in terms of delay, throughput and fairness.

Definition 1. We define policy as the access scheme of user n at time slot k as a map-
ping from user’s history to a conditional probability mass function πn(·|Hn(k )) over the action
space {0, 1}.
Each new action An(k ) ∈ {0, 1} is drawn at random from πn(·|Hn(k )), as follows,

Pr
{

An(k ) = a
∣∣ Hn(k ) = Hn

}
= πn

(
a|Hn(k )

)
. (2.2)

In this work, we are interested to design a policy that can be implemented in a distributed
manner and where transmission probabilities can be adapted as the traffic arrival rate changes.
As mentioned above, the history of each user can be used to design such a scheme using
DRL algorithm.

2.2.1. Performance Metrics

The main objectives of the access scheme to efficiently use the channel resources by re-
solving collisions in an effective manner. Moreover, a scheme needs to be fair between
users, i.e., each user should receive a fair share of the channel access and not incur un-
wanted capture effect. We evaluate throughput, packet delay and fairness for performance
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evaluation of the RA system. For fairness, we propose to use a new metric called as AoP
that can provide us better insights of both short-term and long-term fairness. We define the
performance as follows:

Throughput. Throughput is defined as the total number of successful transmissions during
time K , where K is the total time over which an experiment is performed. Average throughput
is measured by averaging the successful transmission of all the users.

Packet Delay. Packet delay is the total time in slots that has elapsed between the genera-
tion and arrival of packet in user n buffer until it has been successfully transmitted. Let us
consider Gn(k ) as success event at time slot k , i.e., Gn(k ) = 1 if a packet has been success-
fully transmitted and Gn(k ) = 0 if a packet has not been successfully transmitted. The total
number of packets that have been successfully transmitted by user n within K successive
time slots, is

∑K
k=1 Gn(k ). The sum of delays is equal to∑

i

Dn(i) =
∑

k

1{Bn(k ) > 0}, (2.3)

where 1{·} is the indicator function, which evaluates to 1 if the statement in braces is true
and 0 otherwise.
We calculate the average packet delay for user n as

dn =
∑

i Dn(i)∑K
k=1 Gn(k )

, (2.4)

and the average delay for the whole system is

D =
1
N

∑
n

dn (2.5)

Age of Packet (AoP). The AoP can effectively measure if each user has been give a fair-
share of the channel or not. Therefore, we propose to use average AoP to measure fairness
among users. Although AoP can be seen as cost of delay for a particular user, it provides
us insights about capture effect and the capture effect causes unfairness among users.
Moreover, popular Jain’s index [14] to measure the fairness has a limitation that it does not
capture the effects of short-term fairness. AoP on other hand can show fairness for both
short and long terms.
For a packet that is in each user’s buffer, age of packet is increased linearly until it is trans-
mitted successfully and age of packet becomes 0 when it has been transmitted.
Let wn(k ) be a positive integer that represents AoP associated with user n at the beginning of
time slot k . Assuming that wn(1) = 0, the AoP of user n evolves through time in the following
way,

wn(k ) =

{
0 if Bn(k ) = 0
wn(k − 1) + 1 otherwise,

, (2.6)

and the average AoP for user n after total time K is calculated as

∆n =
1
K

∑
k

wn(k ). (2.7)
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Figure 2.1: An example of fairness with AoP. The arrows show packet arrivals

We show with an example how AoP can be an effective tool to measure fairness and also
the cost of packet delay incurred due to packets that stay in the queue.

Example. Let us consider a system with N = 3 users and events within K = 10 time slots.
Let us assume for the sake of simplicity that only 3 packets arrive and are transmitted suc-
cessfully within these 10 time slots. Fig. 2.1 shows the packet arrival at each user and the
time slots each user takes to successfully transmit the packet. We show two cases and for
both cases the average delay is the same, which is 2. It means that on average a user takes
2 times slots to transmit a packet. The average AoP however, for both cases is different,
9/10 for case 1 and 12/10 for Case 2. Evidently from Case 2 in Fig. 2.1b, user 2 took 4
time slots to transmit the packet and other two users took only 1 time slot each. Case 2 is an
example of unfair channel utilization because during the capture effect when a single user
captures the channel, all other users starve and hence the average AoP is high.

2.3. RL Environment for Random Access
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To learn a transmission policy for slotted RL in a single channel and multiuser system, we
consider the RL environment as the available physical resources (the channel) as shown in
Fig. 2.2.

• Every user interacts with the environment by taking an action and receiving a reward
signal. The RL agents learn by interacting with the environment through iterative trial-
an-error process.

• We consider that each user keeps track of its past actions and feedback signals; this
information is used to learn the access policy and we call is the history of user denoted
by Hn(k ).

• The action of each user is whether to transmit or wait based on the output values from
the DQN. These output values corresponding to each action are used to calculate the
transmit probabilities.

• The environment is partially observable to each user, i.e., each user n is unaware of
the history of the other users.
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Figure 2.2: Interaction of agents (users) with the environment (channel). Users perform an
actions, then receive the feedback signal F (k ). Users update their buffers depending on the
feedback signal and new packet arrivals to the system.

• During centralized training we assume that each user is able to know whether the
transmission on the channel was successful or not. We use this information as reward
of the actions. The purpose of each user is to maximize this reward in the long-term.

• This reward signal is used during training process. In evaluation phase, this information
is not available to users and each user only relies on its history to choose whether to
transmit or wait.

Next, we present how this environment has been used to train the DRL algorithm for channel
access policy.

2.3.1. DQN Architecture and Training

We use a popular DRL algorithm called as DQN [15] that uses neural network to compute
Q-values corresponding to each action. The Q-values are used to calculate the transmit
probability of each action. The algorithm uses trial-and-error method by interacting with the
environment by taking actions and obtaining the reward signal that shows how ’good’ an
action is corresponding to each history Hn(k ) tuple at each time slot. Q-values are updated
at each time slot and for each possible action in the following way:

Q
(
a, s
)
←− Q

(
a, s
)

+ α
[
r + γmax

a
Q
(
a, s′

)
−Q

(
a, s
)]

, (2.8)

where 0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1 are the learning rate (LR) and the discount factor respec-
tively. The training of the DQN as also shown in Algorithm. 1 involves following steps: At
each time slot k

1. Each user n obtains the observation F (k ) and feeds the history Hn(k ) as the input to
the DQN.

2. The output of the DQN are the Q-values Q(a) obtained for possible actions.
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Figure 2.3: DQN training schematic showing policy network, target network and experience
replay.

3. Each user n draws the action following the policy π from the following distribution:

Pr
(
An(k ) = a

)
=

(1− ε)eβQ(a)∑
a∈{0,1}

eβQ(a) +
ε

2
(2.9)

∀a ∈ {0, 1},

for ε > 0, and β > 0 is the temperature.

The values of ε is started from ε = 1 and it is gradually decreased to 0. This ensures that
agent explores the states at the start of training and as the training progresses, the agent
becomes more greedy in action selection (exploitation). This well-known phenomenon is
exploration-exploitation tradeoff in RL. Similarly, the value of β is gradually increased through
training and it has similar effect - the higher the value of β, the more greedy action selection
is. The above equation 2.9 provides a balance between softmax and greedy action selection
policies for RL.

For the centralized DQN training, we use the experience replay technique by storing the
experiences (state, action, reward, next state) for each user in a memory. These experiences
are then sampled uniformly in form of mini batches from the memory for training as shown in
Fig. 2.3. Moreover, we use double DQN [16] in which two neural networks are used. These
two networks are the Q-network with parameters θ that is used to evaluate and update the
policy, and the target network with parameters θ− to evaluate target (next state) Q-values.
The actual Q-values and the target Q-values from both networks are used to calculate the
loss function. The centralized training in this way ensures that we learn a common policy π
for all the users using the same neural network, which is deployed in a distributed manner in
evaluation phase. and users take action without coordinating with each other.
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Algorithm 1: DQN Training for Slotted RA
1 Define a ∈ (0, 1], γ ∈ [0, 1], ε > 0
2 Initialize Bn(k ) = 0 ∀n ∈ N ; weight update frequency L
3 for time slot k = 1, ... , K do
4 for user n = 1, ... , N do
5 Observe Hn(k ) and feed it to Q-network
6 Generate the estimate of Q(a) ∀a ∈ {0, 1}
7 Take action An(k ) according to (2.9)
8 Obtain feedback F (k ) and reward signal R(k )
9 Update Bn(k ) and obtain new packets to create H′n

10 Observe H′n and feed it to both Q-network Q and target Q-network Qtarget

11 Generate estimates from both Q-networks Q(a) and Qtarget(a) ∀a ∈ {0, 1}
12 end
13 Train Q-network with input H(k ) and output Q-values for all users
14 if t%L = 0 then
15 Qtarget ← Q
16 end
17 end

Training a DRL algorithm requires a tremendous amount of trial-and-error process. The pro-
cess involves tuning the parameters and hyper-parameters of the neural network; designing
a reward signal and state parameters for the RL environment that suits well to solve the
problem. Carefully designing these entities is one of the most important and crucial tasks
for training a RL algorithm. Initially, we used buffer state of each user as a reward signal;
however, this reward was not sufficient to train users for higher arrival rates. Moreover, the
global reward signal instead of local reward helps the DQN during centralized training phase
to learn in a competitive way for all the users. We use a simple DQN fully connected feed-
forward neural network with two hidden layers with 20 and 10 neurons in each for our initial
analysis of the proposed RA scheme.

2.4. Results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For performance evaluation of our designed scheme, the DQN is trained for N = 10 users.
We choose the history size Th = 1 and maximum buffer size B̄ = 1. We train DQN for different
values arrival rates λ. It has been observed that for lower arrival rates, user’s buffer remain
empty most of the times and for higher arrival rates, it remains saturated. Therefore, we use
transfer learning to train our model. This is done by choosing a moderate value of lambda
and transferring the trained weights to train next lambda value. This way the algorithm can
adapt well for different traffic arrival rates.

2.4.1. Proposed Transmission Policy

To better understand how the DQN learns the transmit probabilities depending upon the
history, we choose history size Th = 1. Therefore, for F (k ) ∈ {0, 1}, An(k ) ∈ {0, 1}
and Bn(k ) ∈ {0, 1}, we have total 23 = 8 possible states for each user. However, the
focus is only on the states when user n has a packet in the buffer, Bn(k ) = 1, that is,
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Figure 2.4: DQN policy transition w.r.t the arrival rate λ during training.

S1 = (0, 0, 1), S3 = (0, 1, 1), S5 = (1, 0, 1) and S7 = (1, 1, 1). Naturally, when Bn(k ) = 0
the users remain silent because there is not packet to transmit. For a small state space, we
can now track the policy and if it makes sense as shown in Fig. 2.4. For various arrival rates
we show how the transmit probabilities change during training. It is evident that DQN learns
to transmit immediately (with pn = 0.99) if success happens, which is like the Immediate-
first-transmission (IFT) policy used for retransmission control in slotted ALOHA [3, 4]. The
most interesting state is S3, i.e., when the last transmission was successful but user n did
not transmit. The transmission probability starts from 1 and decreases gradually as the ar-
rival rate increases. Moreover, the state S5 almost remains consistent around 0.5 transmit
probability. These two states, S3 and S5, provide each user more degrees of freedom to
achieve better performance compared to baseline schemes and to keep the system stable
even if the arrival rate increases.
For results and evaluation, we divide EB techniques into two schemes: non-symmetric EB
(nSEB) scheme and symmetric EB (SEB). In nSEB, the transmission probability of users
that are involved in the collision is changes and the transmission probability pn of other users
remain unchanged. Once the transmission of user n is successful, the user transmits with
pn = 1. On other hand, in SEB, the transmission probability of every user is changed based
on collision no-collision event and in both cases the transmissions probabilities are increases
and decreased exponentially with a backoff factor σ. For binary exponential backoff, as the
name suggests, σ = 1. One of the issues with nSEB is that it incurs capture effect, where
a single user occupies the channel for some time and hence, making other users starve.
Apparently, this scheme is unfair and therefore, SEB scheme mitigate this effect by gradually
adjusting the transmit probability for all the users.
We used the DQN transmission policy for slotted RA in Fig. 2.4 to evaluate average through-
put, average AoP and average delay of the system, and compared it to the baseline schemes
SEB and nSEB for backoff factors σ = 2 and σ = 1.25, as shown in Fig. 2.5. For σ = 2, the
non-symmetric EB is referred to as BEB and for the symmetric EB, it is referred to as binary
SEB (B-SEB) in Fig. 2.5. Our results (submitted for publication) show that the proposed
DQN-based policy outperforms both baseline techniques in terms of throughput, delay and
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Figure 2.5: Average Throughput, AoP, and delay Comparison of the designed scheme with
other baseline schemes for 10 users

AoP. We have seen that nSEB scheme provides better throughput as opposed to SEB but
it is unfair as the AoP for few users is very high and very low for others. This shows that the
distribution of AoP is uneven among users and hence it is unfair, while for BEB and for the
proposed scheme, the AoP is fairly distributed. The proposed policy provides better tradeoff
between fairness and throughput compared to both nSEB and SEB scheme.

2.4.2. Future Work

In this report, we have presented the potential of DRL for slotted RA environments and
how DRL algorithm leverages history to learn a transmission policy. However, we have
used small history th = 1 size and less number of users to provide better insights into the
training process of the DQN for analysis. We have been able to observe how the policy
changes for different history states, and adapts to different arrival rates. Our next work will
focus on using larger history size and exploiting the past information using Long short-term
memory (LSTM) networks. We will also consider using the DRL algorithm to optimize AoP.
Moreover, we will work on designing a scheme for higher number of users. The scalability
to massive settings for mMTC networks is a challenging task, and we will extend our work
for massive RA. However, for this purpose, we will consider using large history size, and
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possibly more number of parameters in the history to train our model. In massive RA, users
will have different sleep cycles and activation times, and sporadic traffic arrivals. A RA
scheme that takes into account these characteristics and is adaptive to these patterns is
desirable. Moreover, using success as a reward signal may not be sufficient to learn for a
system with high number of users. One option is use a reward that is a combination of AoP
and success or a combination buffer size, AoP and success. Obviously, it will depend on the
updated system model and its parameters.
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3. Model-free learning for mission-critical latency optimiza-

tion

3.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The traditional metrics such as latency and jitter can not fully characterize the information
freshness [17] [18] [19]. Many emerging services or systems such as Autonomous Driv-
ing, Industrial Automation, and Tactile Internet require real-time monitoring and low-latency
constrained information delivery. The growth of time-sensitive information led to a new data
freshness measure named Age of Information (AoI) [19] [20] [21]. AoI measures packet
freshness at the destination accounting for the time elapsed since the last update gen-
erated by a given source [22]. Consider a cyber-physical system such as an automated
factory where many sensors are located at a connected area and they are transmitting time-
sensitive information to a remote observer through a wireless network. Each sensor’s job is
to sample measurements from physical phenomena and transmit them to the monitoring site.
Due to the limitation of the wireless bandwidth, the wireless network will challengingly trans-
mit all the fresh data to the monitoring side on time. Hence, a wireless resource scheduler
purposed in this chapter will provide some different strategies with the joined consideration
of AoI and the other network performance index.
In this work, the designed wireless resource scheduler uses different algorithms to achieve
the performance goals of the mission-critical system. The general performance goal is to
minimize the AoI of each network node. The AoI minimization problem can be considered
as optimizing on average AoI [23]. Motivated by the success of machine learning in solving
many of the online large-scale networking problems, we seek a model-free reinforcement
learning approach to deal with the correlations that arise in the scheduling problem. There-
fore, we transfer the AoI minimization scheduling problem to a multi-arm bandit problem
that the minimizing the expected AoI of each node and maintaining the tradeoff between
the other performance index. According to this transformation, we consider solving the AoI
minimization scheduling problem via optimizing the scheduling priorities of each UE. In this
chapter, we propose an algorithm based on Deep Reinforcement Learning (DRL) to solve
the formulated wireless resource scheduling problem. DRL is defined by three components
(observation, action, and reward). Given a series of network observations, the DRL agent is
trained to predict the future actions that maximize the system reward (w.r.t the minimal AoI).
To solve this scheduling problem, the DRL agent continuously interacts with the network en-
vironment and then tries to find the best scheduling policy based on the reward/cost feeding
back from that network environment [24].
The rest of the chapter is organized as follows. Section 3.2 presents a comprehensive review
of related work. The problem formulation, system model, network architecture, and the
reinforcement learning design are shown in Section 3.3. The proposed learning algorithm
is presented in Section 3.4, whereas the numerical simulations are given in Section 3.5.
Finally, the conclusions are drawn in Section 3.6.

3.2. Background and Related Work
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Recently, some papers were tackling the problem of minimizing the AoI of a number of
sources that are competing for the available radio resources. [25] considers the problem
of many sensors connected wirelessly to a single monitoring node and formulate an opti-
mization problem that minimizes the weighted expected AoI of the sensors at the monitoring
node. Moreover, the authors of [26] also consider the sum expected AoI minimization prob-
lem when constraints on the packet deadlines are imposed. In [27], sum expected AoI
minimization is considered in cognitive shared access.
The scheduling decisions with multiple receivers over a perfect channel are investigated in
[28], [29], where the goal is to learn data arrival statistics. Q-learning is used for a generate-
at-will model in [28], while policy gradients and DQN methods are used for a queue-based
multi-flow AoI-optimal scheduling problem in [29]. In addition, AoI in multi-user networks has
been studied in [28]– [30]. The authors shown in [31] that the scheduling problem, where a
set of links that share a common channel and the transmitter at each link contains a given
number of packets with timestamps from an information source, is NP-hard. Scheduling
transmissions to multiple receivers is investigated in [28], focusing on a perfect transmission
medium, and the optimal scheduling algorithm is shown to be of threshold type on the AoI.
Average AoI has also been studied when status updates are transmitted over unreliable
multiple-access channels [32] or multi-cast networks [33]. A source node sending time-
sensitive information to many users through unreliable channels is considered in [34], where
the problem is formulated as a multi-armed bandit (MAB), and a suboptimal Whittle Index
(WI) policy is proposed.
Most prior literature on AoI assumes perfect statistical knowledge of the random processes
governing the status update system. However, in most practical systems (e.g., heterogenous
UEs with different mission-critical traffic co-located in the same network), the characteristics
of the system are not known a priori and must be learned. A limited number of recent
works consider the unknown or time-varying characteristics of status update systems, and
apply a learning-theoretic approach [35], [29]. To the best of our knowledge, the multi-arm
bandit scheduling for a tradeoff between average AoI minimization and throughput limitation
is studied for the first time at a multi-user system.

3.3. System Model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this research work, we consider a mission-critical system consists of a 5G network with
one base station (gNB), N UEs and UE’s controller as described in Fig. 3.1. For instance, a
centralized autonomous logistics system in a private park can be demonstrated as a mission-
critical system. The centralized controller monitors the state of each UE/vehicle through the
5G wireless network at the remote side. UEs connect to the controller via the base station.
The connection between a UE and the controller can be modeled as a virtual link. Since
the vehicles move with high speed around the whole park area, to keep the system stable,
UEs shall transmit fresh data such as sensor information or velocity to the controller and
fetch control signals back to maintain the sysytem operation. All the UE data can be stored
into multiple packets and be transmitted to controller individually via the wireless link. For
the packet transmission scheduling over a link, a time-slotted system is considered, where
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Mission-Critical System

Figure 3.1: An autonomous logistics system at private park

scheduling decisions are made at the beginning of each time slot t . Each time slot has a
duration of τ , which is equal to 1 ms or even smaller by using dynamic transmission time
interval. Due to the network resource limitation, the network only allows a subset of UEs
at a time to send packets to the central controller. The total link bandwidth is denoted as B
and 0 < B < N. Each link was allocated a part (step=1) of channel bandwidth at time slot t ,
bn(t), and 0 < bn(t) < B. We assume that only m UEs (m ≤ N|m, N, B ∈ N) are selected to
send its packets at timeslot t .
Let Sn(t) be a random variable that indicates the selection of UE n by the gNB at a timeslot
t, i.e. Sn(t) = 1. if the controller selects UE n at timeslot t , and 0 otherwise. When Sn(t) = 1,
UE n sends its packets to the controller via the base station. On the other hand, the UE
cannot send any packets to the controller. The packet which is successfully received by the
controller can be count as an AoI update message. We define all the possible scheduler
selections, Σ(Sn(t))N

n=1, as a set S.
In addition, the number of packets generated at time slot t can be denoted by Xn(t), which
follows a Poisson arrival process, specifically, M/M/1, with the average packet arrival rate
per slot defined by α. In M/M/1 systems, arrivals are Markovian (Poisson), which means the
packet generation in each UE is triggered by random time intervals. The generated packets
are stored at UE transmitters’ queues, following the first-come-first-serve (FCFS) policy. The
queue length is fixed and given when the system is initialized. The AoI of each UE n is
defined as the time elapsed since the generation of the latest packet that has departed the
transmitter given by

An(t) := t −max
i
{tn

G(i))|tn
D(i)) ≤ t} (3.1)
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where tn
G(i)) and tn

D(i) are the generated and departure instants of the i th packet of UE n. Due
to the time-slotted assumption, we have a step increasing of AoI. If no packet generated from
UE n is received by the controller in a time slot t , the AoI, An(t), was increased by 1, and so
on. Otherwise if at a time slot t , a packet generated from UE n is successfully received by
the controller, the AoI will be updated as below:

An(t + 1) =
{

An(t) + 1 ifXn(t)bn(t)Sn(t) = 0
1 ifXn(t)bn(t)Sn(t) > 1 (3.2)

In addition, the network utilization can be presented as below:

Un(t) =
N∑

n=1

1
1 + e−(bn(t)−Xn(t)) Sn(t) (3.3)

It is a sigmoid function range from 0 to 1. The function has a maximum value when the
allocated bandwidth is just larger than the required bandwidth. And the network utilization
Un(t) is the summation of all client utility value at time t . Our goal is to find suitable age-
aware scheduling policies for a set of UEs so that their utilization can be maximized with AoI
constraints satisfied. We can formulate our goal as the function below: In each time slot t,
given the bandwidth requests (bn(t))N

n=1, select a schedule S(t) := Σ(Sn(t))N
n=1 s.t.

S(t) ∈ argmax
S(t)∈S

N∑
n=1

1
1 + e−(bn(t)−Xn(t)) Sn(t)− βAn(t) (3.4)

where β ∈ R is a scalar control parameter. However, Problem 3.4 is a non-linear integer
programming (NLIP) which is generally complicated to solve [21]. Actually, the optimization
variables in 3.4 include sequential decisions. Nowadays, it is shown that DRL has tremen-
dous performance on the long-term sequential decision-making problems without human
knowledge [36], [37]. At the same time, to realize the decisions in an automatic and zero-
touch manner, DRL-based solutions are necessary. In addition, benefiting from deep neural
networks, DRL is capable of handling high-dimensional observation-action spaces. These
motivate us to propose policy-based model-free DRL solutions, discussed in the next sec-
tion.

3.4. Proposed Machine Learning Model and Algorithm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this article, we consider a learning-based approach to find a scheduling policy from net-
work environment observations. Our approach is based on reinforcement learning (RL). In
RL, an agent at base station interacts with a network environment to learn a scheduling
policy without prior information. If the basestation has prior information such as the incom-
ing traffic from the UEs or the AoI evolution, the basestation scheduler can find the optimal
scheduling policy by the conventional algorithms. To deal with the unknown information in
the network environment, an RL agent is introduced to gradually learn the scheduling policy
from the network environment observations. We define the scheduling policy as π(ot , θt ) that
returns a schedule S(t) as an action at to satisfied Σ(bn(t))N

n=1 ≤ B . At the time-slotted
system, every interaction between the agent and the network environment happends at the
beginning of a time slot. In each interation, the agent sample the environment to get an
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Reinforcement Learning Configuration

Figure 3.2: A Flowchart of Reinforcement Learning Method

obervation ot and performs an action at based on the scheduling policy. After performing the
action, the agent receives a reward rt . Then the agent waits for the next time slot t +1 to inter-
ate with the network environment. The learning process repeats the interations continously
to approximate the optimal scheduling policy which obtains the maximal reward. Hence, the
objective of learning is to maximize the expected cumulative reward. The reward is consid-
ered to ensure a long-term system regret of the current action. As a result, the optimization
scheduling can be defined as

J := max
πk

E[
1

1 + e−(bn(t)−Xn(t)) Sn(t)− βAn(t)] (3.5)

s.t. Σ(bn(t))N
n=1 ≤ B, πk = S(t)

Our RL agent used the Proximal Policy Optimization (PPO) Algorithm. This PPO algorithm
has become one of the most widely used algorithms in RL because it has better sample
efficiency [37].
As shown in Fig. 3.2, the learning process is a finite loop (length: K ∈ N) which is starting
from the agent. In the beginning, the agent will fetch an initial environment observation,
ot=0 = Σ(on(t = 0))N

n=1, from the network environment. The agent observes a set of metrics
from on(t) including the buffer status, AoI value of every UE n; and the throughput achieved
in the last k interactions and feeds these values to the neural network, which will output the
next action. The next action is defined by which UE is to be chosen for the next iteration k +1
at time t + 1. The scheduling policy is transformed from the action obtained from the trained
neural network. If a UE is selected to transmit packets then the corresponding bandwidth will
be reserved for the UE. Next, the base station bandwidth will be allocated to UEs in terms
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of a number of radio symbols. After the new scheduling deploys to all the UEs, a reward is
then observed and fed back to the agent. The agent uses the reward information to train and
improve its neural network model.
Our implementation of PPO algorithm in the scheduling problem is detailed in Algorithm 2.
At each iteration k , the actor collect a time slot of observations. Then we construct the
surrogate loss on these observations and optimiza it with minibatch SGD for e epochs.

Algorithm 2: Proximal Policy Optimization Algorithm
Input: An initial policy with parameters θ and initial observation o

1 for k = 0, 1, 2, · · · until k = K or convergence do
2 Update age and bandwidth request based on observation
3 Take scheduling action using policy π = π(θ)
4 Compute advantage estimate based on the value function
5 Optimize surrogate function ∇J with respect to θ using e epochs and minibatch

size B
6 θk ← θk+1

7 end

3.5. Simulation Results and Discussions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we provide a simulation to illustrate the performance of the proposed scheme
in Section 3.4. To compare the proposed scheme with the prior-art in a realistic cellular
network, the simulation is performed in the network simulator (NS3) [38] In addition, we
select the round-robin algorithm as baseline 1 and a proportional-fair algorithm as baseline
2 [39]. The simulation parameters in NS3 were listed in the table 3.1.

Table 3.1: Simulation Parameters

Parameter Name Value
Number of UEs N 20
Slot Duration τ 1 ms
Maximum Packet Size (d) 2048 bytes
Numerology 0
Duplexing TDD
Bandwidth 20 MHz
Transmission Power 20 dBm
Propagation Model TR 38.901

3.5.1. Simulation Setup

We revise the NS3 LTE module to implement a 5G environment. The modulation and coding
scheme and the resource block allocation are chosen based on the standard [40], [41], [42],
[43], [44], and [25]. Users are distributed uniformly in the service area of 80 * 80 meters
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but the base station is placed at a fixed location in the service area. The simulation time
was chosen to be 900 seconds which ensure enough training samples were collected. For
each UE n, the packet arrival rate is randomly set with a random distribution which has a
mean frequency range between [50, 300]. Regarding the parameters of actor, we have the
batch size B = 80. Then, we set the step size 0.6 and use a three-layer DNN with hyperbolic
tangent (Tanh) activation function, Adam optimizer, and initial learning rate = 0.0003. On the
other hand, the neural network structure of critic starts with an action-appended input layer.
Then, it connects to a fully connected hidden layer and an output layer with N outputs. The
critic also uses the Tanh activation function, Adam optimizer. Additionally, the initial critic
learning rate is set to 0.001.

3.5.2. Simulation Results

The proposed scheme is assessed mainly in terms of the average AoI and average through-
put of UEs. Based on those two metrics, the following scheduling schemes are compared in
between:

1. Round-Robin (RR), where all RBs are evenly allocated to each UE;

2. Proportional-Fair (PF), where all RBs that are allocated depend on the known arrival
traffic distribution;

3. Proximal Policy Optimization (PPO), where all RBs are allocated by the prediction from
our RL agent

We now present our simulation results based on the two baseline algorithms and the Al-
gorithm 2 to perform the reinforcement learning of the scheduler proposed in this study.
Fig.3.3 first sketches the average AoI and Fig.3.4 presents the network throughput with the
corresponding mean traffic generation frequency. It can be seen that the PPO algorithm
outperforms other strategies at the heavy traffic condition due to the use of policy gradient.
The RR algorithm has the worst AoI performance and the lowest throughput due to the full
fairness for each UE. The PF algorithm has the best AoI and throughput performance at
the beginning of heavy traffic because the data generating distribution had been a known
parameter.

3.5.3. Discussions

If the network transmission capacity is larger than the total traffic generation, there is no
network backlog. Thus, any scheduler can achieve the same AoI performance. Therefore,
all the algorithms have the same AoI performance at low traffic conditions. On the other
hand, when the total network traffic exceeds the network transmission capacity, the individ-
ual traffic from each UE starts backlogging. Because of the traffic backlog, the AoI starts
increasing after the data generation rate reaching 120 Hz. We can easily find that the RR al-
gorithm has the worst AoI performance and the lowest throughput because the RR algorithm
does not consider the individual traffic load. Moreover, the PF algorithm has better AoI and
throughput performance at the beginning of the network backlog due to the pre-configured
traffic generation distribution. However, in the practical system, the traffic distribution may
not be obtained. It can be seen in Fig.3.3 and Fig.3.4 that the PPO algorithm achieves the
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Figure 3.3: Average AoI in different Packet Gereration Rates

Figure 3.4: Average Throughput in different Packet Gereration Rates
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highest throughput while keeps the lowest AoI. Since the PPO algorithm adapts the traffic
generation and also the age punishment, the PPO agent can be more flexible to allocate the
network bandwidth. And then the PPO agent can handle the random status in advance.

3.6. Conclusions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This research has characterized the relationship between AoI and scheduling and design
a model-free deep reinforcement learning (DRL) method for optimizing the scheduler. DRL
agent guided scheduler to deal with UEs age constraints and unknown wireless environ-
ment. The problem formulation and optimization process of AoI provided a theoretical basis
for future studies on next-generation network radio resource management. Moreover, the
proposed learning framework of centralized estimation and execution could further demon-
strate the real network. For our future work, we will consider learning-based scheduling for
heterogeneous network architecture.
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4. Routing in airborne ad-hoc networks using Reinforce-

ment Learning

4.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UAV are used in a wide range of applications, from tracking and monitoring animals in re-
mote areas [45] to military applications [46]. In order to effectively accomplish the task, it
can be necessary to deploy multiple UAVs, which are expected to coordinate actions in an
autonomous fashion or execute direct instructions from a control center, over a certain area.
In many scenarios, the UAVs need to exchange a relatively large amount of data with other
members of the swarm and/or with the control station to support a given service. For ex-
ample, distributed area monitoring/patrol applications may require the UAVs to stream high
definition video or thermal camera recordings to the control station. Conversely, high bit rate
data traffic demands wideband communication technologies (e.g., mmWave) that typically
have limited coverage range, so that providing such services over wide areas may require
multi-hop data connections, where the UAVs themselves can act as relays for other nodes
in the network [47].
On the other hand, the UAVs and the control station also need to exchange light control traf-
fic, which usually has strict latency and reliability constraints, but low bit rate requirements.
For example, this control channel can be used by the UAVs to send periodic tracking updates
to the control center, which can use these messages to track the UAVs’ positions [48–50].
In these scenarios, the UAVs and the control center can use different technologies to carry
information and signaling traffic, physically separating the data and control planes. The con-
trol traffic, in particular, can be carried by low-rate long-range communication technologies,
such as LoRa [51], which can provide direct links between the UAVs and the control center.
However, the randomness in the UAVs’ movements makes the design of a multihop routing
protocol for the data plane a challenging problem. Hence, in the following sections, we pro-
pose two different mechanisms to determine sustainable routing schemes while taking into
account the position and mobility of the UAVs.

4.2. Sustainable and Reliable Multipath Routing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we design the Sustainable Multipath UAV Routing for Flying Ad-Hoc Networks
(SMURF) protocol, a centralized multipath routing protocol for FANETs, which exploits the
tracking information available at the control center to estimate the reliability of routes and
select the set of routes that guarantees the overall highest reliability. The routing tables can
be computed by the control center and propagated to UAVs, following the Software Defined
Network (SDN) [52] paradigm.

4.2.1. Scenario Definition

We model a FANET as a time-varying graph G(t) = (V , E(t)), where V is the set of UAVs
in the network and E(t) is the set of existing links at time t . Each drone i is characterized
by its position xi(t) = (xi(t), yi(t), zi(t)) in the 3D space. We define the distance dij(t) =
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||xi(t)− xj(t)||2 between UAVs i and j as the Euclidean distance between the two drones. In
the following, we consider a link eij(t) as part of E(t) if the distance between drones i and j
is lower than the communication range R (which depends on the communication technology
used): E(t) = {eij(t) : dij(t) ≤ R}. This simple assumption is justified by the fact that the
drones will be in line of sight of each other in most practical scenarios; however, the model
can be extended to more complex scenarios and propagation models with negligible effort.
In the following, we omit the time notation for readability; but it is intended that the operations
described below need to be repeated at each time step. As the nodes in the network move
and update their positions, routes are re-evaluated over time. We assume that the real
position xi(t) of each UAVs is not known by the control station, which keeps an estimate
of its Probability Density Function (PDF) p(x̂i = x) instead. We can now define the link
existence probability pt (eij) at time t as:

pt (eij) = pR(dij(t) ≤ R) =
∫
BR (0)

p(x̂i(t)− x̂j(t) = x)dx, (4.1)

where BR(x) is the sphere with radius R and center x.
Let e denote a path i.e. series of adjacent links, from a source (s) to a destination (d), and
Esd be the set of all such routes. We then define the optimal route e∗sd from s to d at time t
as the vector of links that maximize the overall route existence probability:

e∗sd = arg max
e∈Esd

pt (e), (4.2)

If all links were independent, as typically assumed in the literature, we would have Pt (e) =∏
e∈e pt (e). Note that loops are always avoided by definition, as a route with a loop always

has a lower or equal probability of existence than the same route without the loop.
Taking a further step forward, in this paper we also model the joint existence probability of
adjacent links, which slightly complicates the expression of pt (e), as explained later. Once
we have found the optimal route e∗sd , we can define its optimal backup as the route b(e∗sd )
that maximizes the success probability when the first route fails (an event denoted by ē∗sd ):

b(e∗sd ) = arg max
b∈Esd |ē∗sd

pt (b|ē∗sd ). (4.3)

where Esd |ē∗ indicates the set of viable paths from source s to destination d , given that the
primary path e∗sd (t) is disrupted. We can generalize the notion of backup route to compute
the optimal backup to a set of existing routes, considering the best route if the existing
ones all fail. In the following subsections, we report the derivation of the route existence
probability, along with the SMURF algorithm to calculate the primary and backup routes.

4.2.2. Link existence probability

We now assume that the estimated position distribution for each node is a multivariate Gaus-
sian distribution, x̂i ∼ N (µi ,Σi). This assumption is justified if the tracking system uses
Kalman filtering, as common in the literature [50]. We also assume that the positions of the
UAVs are mutually independent. The covariance matrix Σi is not necessarily diagonal, as
we expect a higher error in the direction of movement of UAVs. The PDF of the position for
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the node i is given by the multivariate normal distribution:

pi(x̂) =
1

2π
√
|Σi |

e(− 1
2 (x̂−µi )H [Σi ]−1(x̂−µi )), (4.4)

where xH is the Hermitian of vector x. Hence, the link existence probability as expressed
in (4.1) for each timestep t is given by:

pt (eij) =
∫
BR (0)

e(− 1
2 (x−(µi−j ))H (Σi−j )−1(x−µi−j ))

2π
√
|Σi−j |

dx, (4.5)

where µi−j = µi − µj and Σi−j = Σi + Σj , as the difference of two independent multivari-
ate Gaussian random variables is itself multivariate Gaussian with those parameters. This
integral cannot be solved analytically, but it can be computed efficiently using numerical
methods. We can extend this to the conditioned link existence probability for a link that
shares a node with one that is known to exist, pt (eij |ejk ):

pt (eij |ejk ) =
∫
R3

pj(x̂j)
∫
BR (x̂j )

∫
BR (x̂j )

pi(x̂i)pk (x̂k )d x̂id x̂kd x̂j (4.6)

In the same way, we can derive the probability that link eij exists if ejk does not, just by in-
tegrating x̂k outside the region BR(x̂j). All the computations above are so reduced to the
calculation of multivariate Gaussian integrals, which can be performed efficiently with well-
known numerical methods [53, 54]. Since the routing algorithm is executed by the control
station, which should have sufficient computational power, there are no issues with the lim-
ited battery and computational capabilities of the UAVs.

4.2.3. Routing Metric Calculation

In order to compute the existence probability of a route, we need to consider all of its links
jointly. In the following, we simplify the probability calculation by assuming that links that
do not share nodes are independent. This simplification is justified by the fact that each
UAVs’ movement is assumed to be independent, so that it is reasonable to expect that
the mutual dependence of links that do not share nodes is negligible. Considering more
faithful approximations is possible, but are left for future work. Therefore, for a path e =
[e12, e23, ... , en−2,n−1, en−1,n] we can write:

pt (e) ' pt (e12)pt (e23|e12) ... pt (en−1,n|en−2,n−1). (4.7)

Furthermore, the calculations above refer to a single timestep, but the Kalman filter-based
location prediction can be extended to the next T timesteps. We can then extend the pre-
diction to a vector:

p(T )
t (eij) = {pt (eij), pt+1(eij), ... , pt+T−1(eij)} . (4.8)

In the same way, we can compute p(T )
t (e) for any route. Naturally, this is a slight simplification,

as the error on the position of the nodes is not independent over time, but cumulates, so there
is a positive correlation between the existence probability at one step and the next. However,
in the interest of computational simplicity, we make this further simplification.
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To compute the routing metric, we could consider any function of the vector p(T )
t (e), but we

take the average over the time horizon for simplicity’s sake. Since the route existence proba-
bility at any given timestep is computed considering only the dependence on the immediately
previous link, we can efficiently build a spanning tree by using the negative logarithm of the
link existence probability as a routing metric:

W (ejk |eij) = − log10

(∑t+T−1
τ=t pτ (ejk |eij)

T

)
. (4.9)

In this way, links with a higher existence probability over the whole timeframe are chosen by
the routing algorithm.

4.2.4. Backup Routes Calculation

By definition, the primary route is the one with the highest probability of existence, but it
might still fail in a dynamic scenario. For this reason, we consider a set of backup routes,
which can be selected in case the primary one fails. This can significantly increase the
reliability of the transmission if the UAVs swarm is dense enough, as there will be multiple
viable routes to the destination. In order to calculate the optimal backup, we consider single-
link failures and define the conditional path existence probability, given the link is down, as
follows:

bi(e∗sd ) = arg max
b∈Esd |ē∗sd

P(b|ē∗i ,sd ). (4.10)

If the i-th link in the primary route does not exist, we can compute the conditional joint
position PDF of nodes i and i + 1, as:

p((x̂i , x̂i+1) = (x, y)|ēi ,i+1) =

{
pi (x̂)pi+1(ŷ)
1−P(ei ,i+1) , ŷ ∈ BR(x̂);

0, ŷ /∈ BR(x̂).
(4.11)

We can then adjust other links’ existence probabilities with such a conditional PDF and
rebuild the spanning tree to find the backup route. After computing the optimal backup bi(e∗)
for each link failure, we compare them by considering the probability of the link failing. The
optimal backup route is then given by:

b̃(e∗sd ) = arg max
b1,...,bN(e∗sd )−1

P(b|ē∗i ,sd )(1− P(ei ,sd )), (4.12)

where N(e) is the number of nodes in route e. We compute successive backups by con-
sidering single broken links in the primary route to simplify the calculation, even though the
result is slightly suboptimal. The calculation of the backup routes can be extended to longer
time horizons in the same way we outlined for the primary route.
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Figure 4.1: Route Availability Ratio for different protocols over different prediction intervals

4.2.5. Results

To examine the performance of the protocols, we use three different metrics:

Route Availability Ratio =
Route Availability Time
Total Simulation Time

Route Establishment Overhead =
Number of Routing Packets

Number of UAVs × Total Simulation Time

Route Sustainability Criterion =
Route Availability Ratio

Route Establishment Overhead
The Route Availability Ratio (RAR) is used to determine the availability of at least one path
between source and destination, the Route Establishment Overhead (REO) is used to deter-
mine the overall number of routing packets exchanged per second for any network size, and
the Route Sustainability Criterion (RSC) is used to determine the availability of at least one
route from source to destination with respect to the number of exchanged routing packets
per second. This metric essentially shows the cost incurred to provide a certain route avail-
ability, thereby showing the sustainability of the network. Two additional protocols, namely,
AODV and Distance-based SDN routing, are considered along with SMURF. The AODV sim-
ulation is designed with the assumption that each UAV has perfect information regarding the
positions of all other UAVs in the network at the time of network route computation, thereby
knowing beforehand the failures that can potentially occur in a route. This is not an entirely
realistic assumption, which acts as an upper bound for the real performance of AODV in
this scenario. The Distance-based SDN routing, henceforth referred to as Distance, uses
the position information obtained by the central controller from the UAVs and determines the
shortest path between the source and the destination based on the geographical distance
between two UAVs. Figure. 4.1, 4.2 and 4.3 refer to the RAR for the different protocols
over different prediction intervals, REO for the different protocols over a prediction interval
of 10 seconds and RSC for the different protocols over a prediction interval of 10 seconds
respectively. As visible from Figure 4.1, SMURF outperforms both Distance and AODV for 5
seconds and 10 seconds prediction interval. SMURF also has a comparable performance to
AODV for 1 second prediction interval and outperforms Distance for 1 second prediction in-
terval. This is because AODV has perfect position information thereby being able to perform
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Figure 4.2: Route Establishment Overhead for different protocols over prediction interval of
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Figure 4.3: Route Sustainability Criterion for different protocols over prediction interval of 10
seconds

well in prediction over a short duration. SMURF outperforming Distance and AODV comes
at a cost of high REO as shown in Figure 4.2. As visible, the REO of SMURF and Distance is
twice that of AODV. This generally is not a big issue in the system as the SDN control pack-
ets attributing to the REO in SMURF and Distance are sent over a long range technology
(such as LoRA) thereby not contributing to the overhead in the data plane while the packets
sent by AODV interfere with the operations of the data plane. Hence, due to higher REO
for SMURF and Distance, the RSC of SMURF and AODV is smaller than that of AODV as
visible in Figure 4.3. The reason for high REO and low RSC for SMURF compared to AODV
is due to the periodic updates of calculated routes to all the nodes in the network. Hence,
to design a more adaptive mechanism for updating the routes to the UAVs, we devised a RL
mechanism explained in the next section.

4.3. Sustainable Multihop Route Design: A RL approach
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SMURF defines a multipath routing scheme for UAVs but requires periodic updates to the
UAVs to reconfigure the routes in the network. This causes an increase in REO and de-
crease in RSC compared to AODV protocol. This motivated the need to adapt the route
updates to the UAVs so as to reduce REO while maximising the RAR thereby increasing the
RSC of the system. To devise this, we propose an RL mechanism that can adapt and learn
the frequency of routing updates.

4.3.1. Scenario Definition

The scenario involves a network of U UAVs, which need to communicate through multiple
wireless hops. We assume that the successful transmission between drones i and j is
represented by a Bernoulli random variable Ei ,j(t), whose probability is an unknown function
of their positions P(Ei ,j(t)|xi(t), xj(t)). According to the SDN paradigm, a centralized controller
sets up the routes between the nodes and propagates them. The problem is to determine
the routes that are most stable, considering that sending route update messages has a
cost. In the following, we do not consider the load on each link, but limit our analysis to
the existence of the links. We formulate the model as a Markov Decision Process (MDP),
which is determined by a state space, an action space, and a reward function. We consider
the routing for each flow, identified by its source i and destination j , as a separate and
independent problem.
First, we define a route between a source i and a destination j as a vector ρ of Nρ relays.
The route is composed of the link between i and ρ1, the link between ρ1 and ρ2, and so on,
until the last link between ρNρ and j completes the path. As we explained before, the reward
function is given by the existence of the route (i.e., the existence of all the links that compose
it), minus a constant cost θ if the controller changes the route:

r (ρ(t),ρ(t − 1), X(t)) = Ei ,ρ1EρNρ ,j

Nρ−1∏
i=1

Eρi ,ρi +1 − θ(1− δ(ρ(t),ρ(t − 1))), (4.13)

where X(t) is the matrix containing the position of all nodes at time t and the function δ(x, y)
is equal to 1 if the vector x is exactly identical to y and 0 otherwise.
We now define the action space. If we limit the number of relays Nρ to a maximum Nmax, we
get that the space A of possible actions is equivalent to all possible routes in the network:

A =
Nmax⋃
Nρ=0

σ({1, ... , U} \ {i , j}, Nρ), (4.14)

where σ(M, k ) is the set of non-repeating permutations of length k of the elements of the
set M. Note that the empty vector ∅ is a possible action, as it indicates that no relays are
used and the route is just the direct link between source and destination. The size of the set
of actions grows exponentially with Nmax, so it might be advisable to reduce it using pruning
techniques to limit the number of candidate relays.
We now need to define the state space. At time t , the state of UAV i can entirely represented
by the output of each Unscented Kalman Filter (UKF), i.e., by the state vector zi(t − 1) ∈ Rk ,
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Figure 4.4: Transition diagram with post-decision states.

which can be used to predict xi(t). The matrix Z containing all the UKF outputs then rep-
resents the state of the system at time t , along with the previously active route ρ(t − 1).
The state space is then S = RUk × A. It contains an infinite number of possible states, so
the problem requires the use of DQL. s We remind the reader that the objective of a rein-
forcement learning approach is to find the policy π∗ that maximizes the long-term expected
reward, defined as:

π∗ = arg max
π∈Π

E

[
∞∑
τ=t

γτ−t
∫

S

∑
aτ∈A

r (sτ , aτ )π(aτ |sτ )P(sτ |π, st )dsτ

]
∀st , (4.15)

where Π is the set of possible functions π : S 7→ P(A), which map each state to a probability
distribution over the action space, and γ ∈ [0, 1) is an exponential discount factor.

4.3.2. Post-decision states

To simplify learning the policy for the RL problem defined, the use of Post Decision State
(PDS) models [55] can be incredibly lucrative. The idea is to define an intermediate state
representing the agent immediately after it makes a decision, but before the effects of its
action can be evaluated. Instead of taking action at in state st and transitioning directly
to st+1, it goes through an intermediate transition to s′t , which is shown in Fig. 4.4. This
transition is deterministic, and can separate the deterministic effects of an action in a state
from its consequences in the environment. The transition from the post-decision state to the
next pre-decision state is then purely the effect of the environment, as the agent has already
made its decision and cannot affect the transition anymore.
In our case, we define the post-decision state space S′ as being equal to S. Instead of being
composed of Z(t) and ρ(t − 1), the post-decision state contains Z(t) and ρ(t). We can now
look at the reward and divide it in two:

r (s(t),ρ(t)) = v (s′t )− θ(1− δ(ρ(t),ρ(t − 1))), (4.16)
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where the PDS value function v (s′t ) is given by:

v (s′t ) = Ei ,ρ1(t)EρNρ(t)
,j

Nρ(t)−1∏
i=1

Eρi (t),ρi +1(t). (4.17)

Since we know that s′(t) is given by V(t) and ρ(t), it is a deterministic function of the state
and action. We can reformulate the optimal policy formulation given in (4.15) to use PDSs:

π∗ = arg max
π∈Π

E

[
∞∑
τ=t

γτ−t
∫

S

∑
aτ∈A

(
v (s′τ )− θ(1− δ(aτ , aτ−1)

)
π(sτ , aτ )P(sτ |π, st )dsτ

]
∀st .

(4.18)
We can define the reward in terms of the PDS value function V (s′t , π), which is given by:

V (s′t , π) = E[v (s′t )] +
∑

at+1∈A

∫
S

P(st+1|s′t )π(st+1, at+1)
(
V (s′t+1 − θ(1− δ(at , at+1))

)
dst+1. (4.19)

The optimal policy definition then becomes:

π∗ = arg max
π∈Π

∑
at∈A

π(st , at )
(
V (s′t )− θ(1− δ(at , at−1)

)
∀st . (4.20)

We can then set up learning based on the PDS formulation, simplifying the problem.

4.4. Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hence, in this work, we presented the usage of SMURF protocol over a time horizon and
devising the route availability with respect to other protocols. We also showed the establish-
ment cost that is incurred while propagating the calculated routes in the system. Additionally,
to minimize the cost incurred for route establishment by SMURF, we introduce an adaptive
RL mechanism which can learn about the position and mobility of the UAVs in the network
and thereby update routes only when there is a need to update instead of a periodic update
which was necessary for SMURF. Furthermore, this mechanism is currently being imple-
mented to be simulated over the same UAV network.
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5. Emerging a MAC protocol with Multi-Agent Reinforce-

ment Learning

In this chapter, we propose a new framework to enable a MAC protocol to be emerged by
the network nodes in a multiple access scenario. The comparison with a contention-free
baseline shows that our framework achieves a superior performance in terms of goodput
and can effectively be used to learn a new protocol.

5.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The current 5G networks are designed to support a wide range of services, including En-
hanced Mobile Broadband (eMBB), Ultra Reliable and Low Latency Communications (uRLLC)
and mMTC, which in turn will support an important growth in the number of applications. This
upsurge in novel services and applications is expected to also happen with 6G [56]. This
heterogeneity of wireless networks may represent a challenge to protocol design. There-
fore, protocols tailored to specific applications may perform better than general-purpose
solutions [57].
ML can be used to design protocols, boost the network capacity [58] and reduce the efforts
and costs for future standardization [59]. It is possible to view a protocol as the language of
a network, since the network nodes have to negotiate how to transmit data by exchanging
messages. Then, the idea of emerging a new protocol would be similar to emerging com-
munication between the network nodes. RL is one category of ML that provides the means
to reach this goal.
During the last years, research on how to emerge communication in order to achieve col-
laboration between multiple agents received a growing attention [60–62]. This growth partly
relies on recent advances in MARL for cooperative problems [63]. Learning to cooperate
by leveraging communication is about teaching agents to either learn existing natural lan-
guages or to emerge a fully new communication protocol that would help them collaborate
to solve a task.
Contribution: Our proposal is to leverage cooperative MARL augmented with communica-
tion to allow a fully new MAC protocol to emerge. The idea of learning a given protocol has
already been addressed in a previous work [64], but to the best of the authors’ knowledge,
there is no previous work on studying the emergence of a new MAC protocol (signalling
included) with MARL. In the future, this idea may be used to develop application-tailored
protocols that could perform better than the human-designed ones.
This chapter is structured as follows. In Section 5.2, we briefly review the literature. In
Section 5.3, we give a short background overview of MARL and the algorithm used in this
chapter. Section 5.4 describes the system model used and in Section 5.5, we present a
new framework allowing the emergence of MAC protocols with MARL. Finally, Section 5.6
illustrates the performance of our algorithm with our numerical results, where we compare
the proposed solution with a baseline. The main conclusions are drawn in Section 5.7.

5.2. Related Work
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Several papers have applied RL to the MAC layer, mostly to solve RRM problems such as
scheduling ( [65,66]) and dynamic spectrum access ( [67,68]).
In [64], MARL is used to learn a predefined protocol and a new channel access policy. This
is done by having a Base Station (BS) which uses a predefined protocol while the UEs
are RL agents. The UEs are trained to learn the signaling and how to access the channel
without any prior knowledge. This way, they can learn their own channel-access policy, while
respecting the target signaling policy. However, in this case the agents only learn to use an
already known MAC signaling, rather than developing a new one.
In [57], a framework to design a protocol is proposed by considering the different functions
a MAC protocol must perform. An RL agent designs a protocol by selecting which building
function to use according to the network conditions. However, in this case, the RL agent still
has a prior knowledge due to the use of the predefined protocol functions.
In [69, 70], cooperative MARL is used to emerge a coding scheme by joint learning of com-
munication and cooperation to solve a task with the help of a noisy communication channel.
The proposition of both works is to emerge a coding scheme that is tailored to the applica-
tion. None of these works address the question of learning a new signaling protocol.

5.3. Background on MARL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RL is an area of ML that aims to find the best behavior for an agent interacting with a dynamic
environment in order to maximize a notion of accumulated reward [71]. The goal of the RL
agent is to find the best policy, which is the mapping of the perceived states to the actions
to be taken. The action-value function Qπ(st , at ), also known as Q-function, is the overall
expected reward for taking action at in state st and then following a policy π.
MARL is an extension of RL for to multi-agent systems (MAS), where multiple agents inter-
act with a system, i.e the environment. In this chapter, we use the Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) formulation [72], augmented with com-
munication. A Dec-POMDP for n agents is defined by the global state space S, an action
space A1, ... ,An, and an observation space O1, ... ,On for each agent. In Dec-POMDP, the
agent observation does not fully describe the environment state. All agents share the same
reward and the action space of each agent is subdivided into one environment action space
and a communication action space. The communication action represents the message sent
by an agent and it does not affect the environment directly, but it may be passed to other
agents. This formulation is shown in Fig. 5.1, where oi represents the observation received
by the i th agent, r represents the reward, ai and ci represent the environment and commu-
nication actions, respectively. In this chapter, the agent internal state xi may comprise not
only the agent’s current observation, but also previous observations, actions and received
messages.
MARL introduces some new challenges, such as partial observability and non-stationarity
[73]. In this chapter, we adopt the multi-agent deep deterministic policy gradient (MADDPG)
algorithm [74], an extension of the Deep Deterministic Policy Gradient (DDPG) algorithm [75]
to multi-agent problems with Centralized Training and Decentralized Execution (CTDE). It
addresses the non-stationarity problem by using a centralized critic. Each agent has an actor
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Figure 5.1: Cooperative MA-RL scheme with communication,

network that depends only on its own agent’s state in order to learn a decentralized policy µi

with parameters θi . During the training, each agent has a centralized critic that receives the
agent states and actions of all agents in order to learn a joint action value function Qi(x , a)
with parameters ϕi , where x = (x1, x2, ... , xn) is a vector containing all the agents’ states and
a = (a1, a2, ... , an) contains the actions taken by all of the agents.
The critic network parameters ϕ are updated by minimizing the loss given by the temporal-
difference error

Li := Ex ,a,r ,x ′∼D
[
y i −Qi(x , a1, ... , an;ϕi)

]
(5.1)

where D denotes the experience replay buffer in which the transition tuples (x , a, r , x ′) are
stored, Q′ and µ′ represent the target critic network and the value of the target actor network,
with parameters θ′ and ϕ′, respectively, and y i is the temporal-difference target, given by

y i := r + γQ′i (x
′, a′1, ... , a′n;ϕ′i)|a′k =µ′k (xk ) (5.2)

where γ is the discount factor. The actor network parameters θ are updated using the sam-
pled policy gradient

∇θi J = Ex ,a∼D
[
∇ai Qi(x , a)∇θiµi(xi) | ai = µi(xi)

]
. (5.3)

The target networks parameters are updated as

ϕ′i ← τϕi + (1− τ )ϕ′i (5.4)

θ′i ← τθi + (1− τ )θ′i (5.5)

where τ ∈ [0, 1] is the soft-update parameter. Smaller values of τ lead to slow target network
changes and are generally preferred [75].

5.4. System Model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We consider a single cell with a BS serving L UEs operating according to a TDMA scheme,
where each UE needs to deliver P SDUs (sdus) to the BS. We assume that each MAC
Protocol Data Unit (PDU) contains only one sdu. The network nodes can communicate,
i.e. exchange information, using messages through the control channels. In the rest of this
chapter, we use the expressions UE and BS to refer to the UE MAC agent and the BS MAC
agent, respectively.
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Figure 5.2: System model example with two UEs.

The channel for the uplink data transmission is modeled as a packet erasure channel, where
a Transport Block (TB) is incorrectly received with a probability given by a TBLER. The
Downlink Control Messages (DCMs) and Uplink Control Messages (UCMs) are transmitted
over the Downlink (DL) and Uplink (UL) control channels, which are assumed to be error
free and without any contention or collision.
We assume that the sets of possible DL and UL control messages have cardinality D and U,
respectively. For example, the UCMs in an UL control vocabulary of size D = 8 would have
a bitlength of log2 D = 3. This exchange is shown in Fig. 5.2, where dashed lines indicate
control information and solid lines indicate user data.
Each UE has a transmission buffer of capacity B MAC sdus that starts empty. At each time
step t , a new sdu is added to the buffer with probability pa, until a maximum of P sdus have
been generated for each UE.
At each time step t , the BS can send one control message to each UE and each UE can
send one control message to the BS while being able to send data PDUs through the Uplink
Shared Channel (UL-SCH). Furthermore, the UEs can also delete a sdu from the buffer at
each time step.
The transmission task is considered finished once all sdus are received and all transmission
buffers are empty. We define the goodput G (in sdus/TTIs) as the number of MAC sdus
received by the BS per unit of time, without considering the retransmissions:

G =
NRX

NTTIs
(5.6)

where NRX represents the number of sdus received and NTTIs is the total time taken to finish
the transmission task in Transmission Time Intervals (TTIs). The delivery-rate ΓRX is the
percentage of sdus correctly received by the BS:

Γ =
NTX

PL
. (5.7)

5.5. Emerging a MAC Protocol with MARL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5.1. MARL Formulation

We can formulate the problem defined above as a MARL cooperative task, where the MAC
layers of the network nodes (UEs and BS) are RL agents that need to learn how to commu-
nicate with each other to solve an uplink transmission task. In addition, the UE agents need
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to learn when to send data through the UL-SCH and when to delete an sdu, in other words,
to learn how to correctly manage the buffer.
In order to decide how to act, an agent needs to consider the messages received from the
other agents. In addition, the UEs also take into account their buffer status when taking
actions, while the BS takes into account the state of the UL-SCH, i.e idle, busy or collision-
free reception.
We use the following notations:

• ou
t : Observation received by the uth UE at time step t .

• ob
t : Observation received by the BS at time step t .

• nu
t : The UCM sent from the uth UE at time step t .

• mu
t : The DCM sent to the uth UE at time step t .

• au
t : Environment action of the uth UE at time step t .

• xu
t : Agent internal state of the uth UE at time step t .

• xb
t : Agent internal state of the BS at time step t .

The observation ou
t ∈ {0, ... , B} is a integer representing the number of sdus in the buffer of

the UE u at that time t . Similarly, the observation ob
t received by the BS is a discrete variable

with L + 2 possible states:

ob
t =


0, if the UL-SCH is idle
u, if the UL-SCH is detected busy with a single

PDU from UE u, correctly decoded
L + 1, non-decodable energy in the UL-SCH.

(5.8)

where u ∈ {0, ... , L}. The environment action au
t ∈ {0, 1, 2} is interpreted as follows:

au
t =


0: do nothing
1: transmit the oldest sdu in the buffer
2: delete the oldest sdu in the buffer

(5.9)

We assume the episode ends when all the sdus are correctly received by the BS or when a
maximum number of steps tmax is reached. The reward given at each time step is:

rt =


+ρ, if a new sdu was received by the BS
−ρ, if a UE deleted a sdu that has not been received by the BS
−1, else,

(5.10)

where ρ is a positive integer. This choice of reward is possible by leveraging the CTDE.
During the centralized training, a centralized reward system can be used to observe the
buffers of the BS and UEs in order to assign the reward.
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5.5.2. Training Algorithm

The proposed RL solution is based on the MADDPG algorithm [74]. Each entity of the
system has its own actor network which outputs the action of an agent given its state. Each
agent also has a centralized critic network which outputs the Q-value given the actions and
states of all agents. The critic networks are only used during the centralized training.
The actor and critic networks have the same architecture; a fully connected Multilayer Per-
ceptron (MLP) with two hidden layers, of 64 neurons each. The activation function of all
hidden layers is the Rectified Linear Unit (ReLU).
The agent state at time step t is a tuple comprising the most recent k observations, actions
and received messages:

• UE u: xu
t = (ou

t , ... , ou
t−k , au

t , ... , au
t−k , nu

t , ... , nu
t−k , mu

t , ... , mu
t−k )

• BS: xb
t = (ob

t , ... , ob
t−k , nt , ... , nt−k , mt , ... , mt−k ), with n and m containing the messages

from all the UEs.

In order to improve training of our MADDPG solution, we make use of parameter sharing [61]
for similar network nodes, in this case the UEs. Similarly to the original work [74], we use
the Gumbel-softmax [76] trick to soft-approximate the discrete actions to continuous ones.
The Gumbel-softmax reparameterization also works to balance exploration and exploitation.
The exploration-exploitation trade-off is controlled by the temperature factor ζ.
After training finishes, we have successfully trained a population of Nrep = 32 protocols. We
then select the protocol that performed best during the last Neval = 500 evaluation episodes.
This selection step can be seen as a "survival of the fittest" approach because only one
protocol of the population of Nrep is chosen going forward.

5.6. Results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6.1. Simulation Parameters

For simplicity, we assess the performance of a system with one BS and two UEs. The
transmission buffer of each user starts empty and the sdu arrival probability pa is 0.5.
The system is trained for a fixed number of episodes Ntrain. At some points during the train-
ing, we evaluate the policy on a total of Neval evaluation episodes with disabled exploration
and disabled learning in order to assess the current performance of the MAC protocol. The
evaluation episodes remain the same in order to effectively compare the performance on
the same set. At the end of the training procedure, we further evaluate the learned proto-
col by assessing its performance in Ntest episodes with exploration and learning disabled.
This whole procedure represents a single training repetition. We evaluate a total of Nrep

repetitions, each with a different random seed.
A summary of the main simulation parameters is provided in Table 5.1, while the parameters
of the MADDPG and DDPG algorithms are listed in Table 5.2.

5.6.2. Baseline Solutions

We compare the proposed solution with a contention-free baseline. We also compare the
proposed solution to two simplified approaches where either the communication between
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Table 5.1: Simulation Parameters

Parameter Symbol Value

Number of UEs L 2
Size of transmission buffer B 5
Number of sdus to transmit P [1, 2]
sdu arrival probability pa 0.5
Transport block error rate TBLER

[
10−1, 10−2, 10−3, 10−4

]
DCM vocabulary size D 3
UCM vocabulary size U 2
Max. duration of episode (TTIs) tmax 24
Reward function parameter ρ 3
Number of training episodes Ntrain 300k
Number of evaluation episodes Neval 500
Number of test episodes Ntest 5000
Number of randomized repetitions Nrep 32

agents is not permitted or the centralized critic is disabled, i.e the DDPG algorithm. The
ablation comparison helps to evaluate if communication and the centralized critic are needed
to solve this task.
In the contention-free protocol, the UE sends an SR (sr) if its transmission buffer is not
empty and it only transmits if it has received a SG (sg). Similarly, it only deletes a TB from
the transmission buffer after the reception of an acknowledgement (ACK). At each time
step, the BS receives zero or more srs. It then chooses one of the requesters at random
to transmit in the next time-step, sending a sg to the selected UE. However, if the UE had
made a successful data transmission simultaneously with an sr, the BS will send an ACK to
this UE and its sr is ignored.

5.6.3. Results

We compare the MADDPG solution with three other solutions, the contention-free baseline,
the MADDPG solution without communication, and the DDPG version of the proposed solu-
tion, i.e. the proposed solution without the centralized critic. For the RL solutions, the solid
lines in Figs. 5.3 and 5.4 show the average performance in the evaluation episodes during
the training and the shaded areas represent the 95% confidence interval (CI). The dashed
lines show the average performance of the baseline.
In Fig. 5.3, we compare the performance in terms of goodput for the TBLER of 10−1. Fig-
ures 5.3a and 5.3b show the results when the UEs have to transmit one and two sdus,
respectively. After evaluating the performance on the Ntest test episodes, we select the best
performing repetitions for each solution in terms of average goodput to compare using box-
plots of the test episodes.
By comparing the RL solutions in both cases, the MADDPG has the best performance and
the ablation without communication has the worst performance overall. In addition, the
MADDPG shows a more stable performance during training, with less variation than both
other RL solutions. The ablation without communication has the greatest variation of perfor-
mance, demonstrated by the CIs and by the boxplots, indicating that communication helps
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Table 5.2: Training Algorithm Parameters

Parameter Value

Memory length 3
Replay buffer size 105

Batch size 1024
Number of neurons per hidden layer {64, 64}
Interval between updating policies 96
Optimizer algorithm Adam [77]
Learning rate 10−3

Discount factor 0.99
Policy regularizing factor 10−3

Gumbel-softmax temperature factor 1
Target networks soft-update factor 10−3
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Figure 5.3: Goodput comparison.

achieving a more robust solution.
In Fig. 5.3a, both the MADDPG and DDPG solutions outperform the contention-free base-
line, whereas the ablation without communication fails to effectively solve the task in this
case. When we move from one sdu to two sdus, in Fig. 5.3b, the DDPG solution does not
outperform the baseline. Moreover, the difference in performance between the MADDPG
and the baseline is reduced.
To better understand the goodput results of Fig. 5.3b, Fig. 5.4 shows the performance in
terms of episode duration, Fig. 5.4a, and of percentage of the total sdus received during the
episode as defined in Eq. (5.7), Fig. 5.4b.
As shown in Fig. 5.4b, the DDPG algorithm achieves a high performance in terms of delivery-
rate, but it takes more time to solve the task, thus the lower performance in terms of goodput
when compared with the MADDPG and the baseline. Comparing the MADDPG with the
contention-free solution in Fig. 5.4a, the proposed solution achieves a better goodput by
finishing the task in less TTIs. The proposed solution has a delivery-rate lower than the
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Figure 5.4: Performance comparison for two SDUs.

contention-free baseline, although it is also very close to 100%.
By applying "survival of the fittest" to pick the best protocol in terms of goodput, the delivery-
rate difference becomes even lower than shown in Fig 5.4b. The best protocol produced
by the proposed solution has an average delivery-rate on the test episodes of ΓMADDPG =
99.973% whereas the average of the contention-free baseline is of Γbase = 99.998%
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Figure 5.5: Performance in terms of goodput for different TBLERs.

In Fig. 5.5, we compare the proposed MADDPG framework with the contention-free baseline
for different TBLERs and with each UE having to transmit two sdus. The performance is eval-
uated on Ntest test episodes by comparing the average goodput achieved. For the MADDPG
solution, we also show the 95% CI across randomized repetitions. The proposed solution
maintains a better performance than the baseline across the different TBLERs. Moreover,
the lowest difference in performance between the baseline and the proposed solution occurs
when the TBLER is equal to 0.1, showing that the proposed solution adapts well to lower
TBLER regimes.
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5.7. Conclusions and Perspectives
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have proposed a novel framework based on cooperative MARL augmented with com-
munication, that provides us with the means to emerge a new protocol. In essence, the
agents have to learn the signaling policy, representing the control messages they exchange,
and the channel-access policy, representing the Physical Layer (PHY) control of the agents.
Comparing with two ablations and a baseline, the results show that a solution capable to
overcome the challenges in multi-agent systems is needed in order to emerge a protocol.
The results also indicate that enabling communication between agents is needed in order to
solve a transmission task. In addition, the results illustrate that the proposed solution can
produce a protocol tailored to all TBLER regimes that outperforms a more general one.
Concerning future work, we highlight a study on the effect of the different parameters, such
as the vocabulary sizes and TBLERs Moreover, we envision a comparison with different
MARL algorithms. Finally, the application of this framework to a more complex system model
is planned.
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6. Anomaly detection for effective LoRaWAN network man-

agement

6.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Low-Power Wide Area Networking (LPWAN) technology offers long-range communication,
which enables new types of services. Several solutions exist; LoRaWAN is arguably the
most adopted. It promises ubiquitous connectivity in outdoor IoT applications, while keeping
network structures, and management, simple. This technology has received a lot of attention
in recent months from network operators and solution providers.

6.1.1. Overview of LoRaWAN.

LoRa is the physical layer used in LoRaWAN. It features low power operation (around 10
years of battery lifetime), low data rate (27 kbps with spreading factor 7 and 500 kHz chan-
nel or 50 kbps with FSK) and long communication range (2-5 km in urban areas and 15 km
in suburban areas). It was developed by Cycleo (a French company acquired by Semtech).
LoRaWAN networks are organized in a star-of-stars topology, in which gateway nodes re-
lay messages between end-devices and a central network server. End-devices send data
to gateways over a single wireless hop and gateways are connected to the network server
through a non-LoRaWAN network (e.g. IP over Cellular or Ethernet). Communication is
bi-directional, although uplink communication from end devices to the network server is
strongly favoured .

LoRaWAN defines three types of devices (Class A, B and C) with different capabilities [78].
Class A devices use pure ALOHA access for the uplink. After sending a frame, a Class A
device listens for a response during two downlink receive windows. Each receive window
is defined by the duration, an offset time and a data rate. Although offset time can be con-
figured, the recommended value for each receive window is 1 sec and 2 sec, respectively.
Downlink transmission is only allowed after a successful uplink transmission. The data rate
used in the first downlink window is calculated as a function of the uplink data rate and the
receive window offset. In the second window the data rate is fixed to the minimum, 0.3 kbps.
Therefore, downlink traffic cannot be transmitted until a successful uplink transmission is
decoded by the gateway.

Class A is the class of LoRaWAN devices with the lowest power consumption. Class B de-
vices are designed for applications with additional downlink traffic needs. These devices are
synchronized using periodic beacons sent by the gateway to allow the schedule of additional
receive windows for downlink traffic without prior successful uplink transmissions. Obviously,
a trade-off between downlink traffic and power consumption arises. Finally, Class C devices
are always listening to the channel except when they are transmitting. Only class A must be
implemented in all end-devices, and the rest of classes must remain compatible with Class
A. In turn, Class C devices cannot implement Class B. The three classes can coexist in the
same network and devices can switch from one class to another.However, there is not a spe-
cific message defined by LoRaWAN to inform the gateway about the class of a device and
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this is up to the application. The underlying PHY of the three classes is the same. Commu-
nication between end-devices and gateways start with a Join procedure that can occur on
multiple frequency channels (e.g. in EU863-870 ISM Band there are 3 channels of 125 kHz
that must be supported by all end-devices and 3 additional 125 kHz channels) by implement-
ing pseudo-random channel hopping. Each frame is transmitted with a specific Spreading
Factor (SF), defined as SF = log2 (Rc/Rs), where Rs is the symbol rate and Rc is the chip
rate. Accordingly, there is a trade-off between SF and communication range. The higher the
SF (i.e. the slower the transmission), the longer the communication range. The codes used
in the different SFs are orthogonal. This means that multiple frames can be exchanged in
the network at the same time, as long as each one is sent with one of the six different SFs
(from SF=7 to SF=12). Depending on the SF in use, LoRaWAN data rate ranges from 0.3
kbps to 27 kbps.

The maximum duty-cycle, defined as the maximum percentage of time during which an
end-device can occupy a channel, is a key constraint for networks operating in unlicensed
bands. Therefore, the selection of the channel must implement pseudo-random channel
hopping at each transmission and be compliant with the maximum duty-cycle. For instance,
the duty-cycle is 1% in EU 868 for end-devices. The LoRa physical layer uses Chirp Spread
Spectrum (CSS) modulation, a spread spectrum technique where the signal is modulated
by chirp pulses (frequency varying sinusoidal pulses) hence improving resilience and ro-
bustness against interference, Doppler effect and multipath. Packets contain a preamble
(typically with 8 symbols), a header (mandatory in explicit mode), the payload (with a maxi-
mum size between 51 Bytes and 222 Bytes, depending on the SF) and a Cyclic Redundancy
Check (CRC) field (with configurations that provide a coding rate from 4/5 to 4/8). Typical
bandwidth (BW) values are 125, 250 and 500 kHz in the HF ISM 868 and 915 MHz band,
while they are 7.8, 10.4, 15.6, 20.8, 31.2, 41.7 and 62.5 kHz in the LF 160 and 480 MHz
bands. The raw data rate varies according to the SF and the bandwidth, and ranges between
22 bps (BW = 7.8 kHz and SF = 12) to 27 kbps (BW = 500 kHz and SF = 7) [79]. Frequency
hopping is exploited at each transmission in order to mitigate external interference [80].

6.1.2. Capacity and network size limitations.

In this section we study the LoRaWAN network scale with respect to data rate, duty-cycle
regulations, etc.

1. Network size limited by duty-cycle.

Although the performance of LoRaWAN is determined by PHY/MAC, the duty-cycle
regulations in the ISM bands [81], [82] arise as a key limiting factor. If the maximum
duty-cycle in a sub-band is denoted by d and the packet transmission time, known as
Time On Air, is denoted by Toa, each device must be silent in the sub-band for a mini-
mum off-period Ts = Toa( 1

d − 1). For instance, the maximum duty-cycle of the EU 868
ISM band is 1% and it results in a maximum transmission time of 36 sec/hour in each
sub-band for each end-device. It is known that large SFs allow longer communication
range. However, large SFs also increase the time on air and, consequently, the off
period duration. This problem is exacerbated by the fact that large SFs are used more
often than small SFs.
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Although Listen Before Talk is not precluded in LoRaWAN, only ALOHA access is
mandatory. Accordingly, the LoRaWAN capacity can be calculated roughly as the
superposition of independent ALOHA-based networks (one independent network for
each channel and for each SF, since simultaneous transmissions only cause a colli-
sion if they both select the same SF and channel; no capture effect is considered).

2. Reliability and Densification drain Network Capacity

In LoRaWAN, reliability is achieved through the acknowledgment of frames in the
downlink. For class A end-devices, the acknowledgment can be transmitted in one
of the two available receive windows; for class B end-devices it is transmitted in one
of the two receive windows or in an additional time-synchronized window; for class
C end-devices it can be transmitted at any time . In LoRaWAN the capacity of the
network is reduced not only due to transmissions in the downlink, but also due to the
off-period time following those transmissions (gateways must be compliant with duty-
cycle regulation). Therefore, the design of the network and the applications that run
on it must minimize the number of acknowledged frames to avoid the capacity drain.
This side-effect calls into question the feasibility of deploying ultra-reliable services
over large-scale LoRaWAN networks. At this point of development of the technology,
LoRaWAN faces deployment trends that can result in future inefficiencies. Specifically,
LoRaWAN networks are being deployed following the cellular network model, that is,
network operators provide connectivity as a service. This model is making gateways to
become base stations covering large areas. The increase in the number of end-devices
running applications from different vendors over the same shared infrastructure poses
new challenges to coordinate the applications. In particular, each application has spe-
cific constraints in terms of reliability, maximum latency, transmission pattern, etc. The
coordination of the diverse requirements over a single shared infrastructure using an
ALOHA-based access is one of the main future challenges for the technology. There-
fore, a fair spectrum sharing is required beyond the existing duty-cycle regulations.
Finally, the unplanned and uncoordinated deployment of LoRaWAN gateways in urban
regions, along with the deployment of alternative LPWAN solutions (e.g. SigFox, and
NB-IoT), could cause a decrease of the capacity due to collisions and due to the use
of larger SFs (to cope with higher interference levels).

6.1.3. Problem statement

In WSN, (as mentioned in [83], [84] and [79]), Performance Monitoring is one of the main
challenges facing large-scale deployments besides the capacity and cost. So to help the
network operator manage and monitor their network in an efficient and effective way and to
avoid resource-wasting, this work focuses on building a model for anomaly detection and
prediction, that will help us identify the status of the network within the near future so we
will be able to handle these issues before they happen. To achieve this goal, we describe a
process that includes collecting the metadata from the different network components at dif-
ferent layers and sendint it to a central base station where further treatment and processing,
with better resources, are possible. At this central base station, a more effective network
monitoring can be achieved. Then the collected metadata from the network will be used to
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study the network performance, identify behavior patterns and train different machine learn-
ing models to predict network operation with this data. Next, we’ll work to define the core
parameters and indicators for LoRaWAN implementations so that we can monitor the net-
work’s progress. In addition, we plan to test several classification approaches in order to
gain further insights into the network’s success beyond purely statistical analysis.
Finally, after testing all of the models, the best models will be validated by testing them in
the real-time environment to see their functionality in reality. Then in order to close, the final
step completes the cycle and corresponds to the ability to behave dynamically in the network
depending on the metrics obtained, either automatically (by each node or by a central control
tool attached to the sink) or by the Network Manager.

6.1.4. Objectives

The main goal of our research project is to build a model able to predict the network status
in the near future and detect anomalies before it happens, therefore, the network operator
will be able to tackle these problems. To achieve this goal then the following objectives have
to be implemented.

1. Identify the key parameters and metrics for LoRaWAN network.

2. Relate the metrics identified to specific network operation scenarios.

3. Design a testbed to collect network data, and develop the needed tools to gather the
data from heterogeneous sources (devices, network servers and gateways).

4. Design a dashboard for data visualization.

5. Evaluate some classification methods to get further insights of the performance of the
network beyond purely statistical analysis.

6. Identify different methods to predict network operation, and to detect anomalies in
network operation.

7. Validate methods of prediction and anomaly detection with the data sets collected from
the test-bed.

8. Validate the best methods in real-life environments.

6.2. Network management.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2.1. Operations, Administration, and Maintenance (OAM) Tools.

[85] "OAM" is a general term that refers to a tool set for detecting, isolating, and reporting
failures, and for monitoring network performance. For each transmission technology, there
are a set of tools used to monitor the performance of the network at different levels. our goal
is to be able to monitor the network (system) at different levels, starting from the end-device
which is the base of the network, then the gateway, where each gateway has at least one or
more end-devices, finally the network (cluster) where each network has at least one or more
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gateways. To achieve this, a set of different key performance indicators (KPI) have been
defined for each network level. Following are the list of the main network monitoring KPIs:

• The total number of active nodes.

• Number of active gateways.

• Gateway utilization ratio.

• Latency (connectivity with the LoRaWAN network server) server response time (SRT).

• Payload size of the received message.

• Time on Air of the received message.

• Duty Cycle consumption.

• Jitter window of the received messages.

• Distribution of SF in downlink messages.

• Distribution of SF in uplink messages.

• Packet loss per day.

• Distribution of used channel.

• Percentage of CRC Failed.

• Total Messages for UL and DL per day.

• Percentage of nodes per SF and frequency.

• The total network duty cycle/average.

• Overall network coverage map.

6.2.2. Data collection.

Generating a dataset is one of the most important steps that should be done at the beginning
of the research process. The main research strategy which is being applied here is the
design and creation of new IT products development, also called artifacts, and the same
approach will be used to generate the data from the network to be able later to use the
survey research strategy to study the data in more depth. In the present case, a code has
been written to collect the metadata from the network.
Fig.6.1 shows the architecture design proposal for collecting the metadata from the network.
The system consists form the following components:

• Messages_logger_1: responsible to retrieve the data from the network server then
store all the messages related to the uplink topic inside the database and at the same
time, the received message is stored in a queue until it is consumed by the Network
monitoring module.
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Figure 6.1: Architecture design proposal for collecting the metadata from the network.

• Messages_logger_2: responsible to receive the metadata files that have been sent
to the cloud from the gateway then decode the data and store every message in a
temporary queue before it will be consumed by Network Monitoring module.

• Network monitoring: the collected metadata from the network will be used to calculate
the KPI for the network then store it in the database.

6.2.3. Data visualization.

After identify the key parameters and metrics for LoRaWAN and design a testbed to collect
the network metadata. Designing a dashboard for data visualization is required and that will
provide us with a quick, clear understanding of the information. Grafana is used to read the
stored KPIs from the Postgres database and then visualize them. Three main dashboards
have been designed one for each data plane level( Network, gateway and end-device). Fig
6.2 and Fig 6.3 shows the dashboard of the Node KPIs.

6.2.4. Network status prediction

After defining the KPI for the LoRaWAN network at different levels. We are ready to move
on to the next step which is studying the collected data and try to extract useful information
about the operation performance of the network then use this knowledge with the KPIs data
to train a model that is able to predict the status of the network in the near future. As we men-
tioned before, building an accurate real-time network status prediction is required in many
networking applications like dynamic resource allocation and network management. First
of all and before exploring machine learning methods for time series e.g Long Short-Term
Memory(LSTM) and recurrent neural network(RNN), it is a good idea to ensure that we have
exhausted classical linear time series forecasting methods. Classical time series forecasting
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Figure 6.2: Dashboard of the Node KPIs.

methods may be focused on linear relationships, nevertheless, they are sophisticated and
perform well on a wide range of problems, assuming that our data is suitably prepared and
the method is well configured.

1. Autoregression (AR).

2. Moving Average (MA).

3. Autoregressive Moving Average (ARMA).

4. Autoregressive Integrated Moving Average (ARIMA).

5. Linear regression.

Many predictors from two main different classes, including classic time series and artificial
neural networks predictors will be compared. These predictors will be evaluated using real
network data. Comparison of accuracy and cost, both in terms of computation complexity
and power consumption.
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Figure 6.3: Dashboard of the Node KPIs.
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