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sors muonted on the vehicles is leveraged to introduce an efficient
mmWave beam selection method. Second, from received signals of
users at the base station a radio map is constructed in an unsuper-
vised manner called Channel Chart (CC). By constructing beam-wise
CCs and training SNR predictors for different beams given CC loca-
tions, we predict the SNR difference of different beams, thereby pre-
dicting the next best beam for a moving user. In a non stand alone
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a best mmWave beam prediction model based on the CC locations, as
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box systems and its solution via Bayesian optimisation of combinatorial
structures.

Keywords: Beam-management, beam prediction, channel charting, non-
standalone systems, radio resource management, large intelligent
surface, computer vision, sensing

Dissemination Level: Public. Page 3



H2020 Grant Agreement Number: 813999

Document ID: WP4/D4.2 windmill
Authors
Full name Beneficiary/ e-mail Role

Organisation

Cristian Jesus Vaca

AAU

cjvr@es.aau.dk

Contributor

KTH

Rubio
Zecchin Matteo EURECOM zecchin@eurecom.fr Contributor
Sergey Tambovskiy Ericsson AB /| sergeyta@kth.se Contributor

Parham Kazemi

AALTO

parham.kazemi@aalto.fi

Contributor

Dissemination Level: Public.

Page 4



H2020 Grant Agreement Number: 813999

Document ID: WP4/D4.2 windmill
Reviewers
Full name Beneficiary/ Organi- | e-mail Date
sation
Hanan Al-Tous | Aalto hanan.al-tous@aalto.fi August 17,
2021
Hugo Tullberg Ericsson AB hugo.tullberg@ericsson.com August 27,
2021

Version history

Version Date Comments

0.1. August 16, 2021 Draft version for review

0.2. August 20, 2021 Updated after first round of review com-
ments

1.0. August 30, 2021 Final version, updated after second round
of review comments

Dissemination Level: Public. Page 5



H2020 Grant Agreement Number: 813999
Document ID: WP4/D4.2 windmill

Table of Contents

1 Introduction and Motivation 12

2 Contextual information for mmWave beam selection in vehicle-to-infrastructure

communication 14
21 SystemModel . . ... ... 14
2.2 Contextual Information for mmWave beam alignment . . . . . . ... ... .. 15
2.2.1 Position Information . . . . . . ... ... 16
2.2.2 Inertial Information . . . . . . . ... 16
2.2.3 sub-6GHz Information . . . . . ... ... ... . ... . 17
2.2.4 LIDAR Information . . . . . . . . . . ... 17

2.3 Conclusion . . . . . . .. e 19
3 Channel Charting-Based Beam SNR Prediction 20
3.1 SystemModel . ... ... ... 20
3.1.1 Basics of Channel Charting . . . . . ... ... ... .. ........ 22

3.2 Framework for CC-Based Best Beam Prediction . . .. .. ... ... .. .. 23
3.2.1 Machine Learning Algorithms . . . . . . . .. .. ... ... ... 24

3.3 SimulationandResults . . . .. ... ... ... ... .. .. 24
3.3.1 Beam SNR Prediction . . . . . .. . . . . ... . ... 25
3.3.2 BestBeam ID Prediction. . . . . . ... .. ... ... ... ..., 26

3.4 Conclusion . . . . . . . .. e e 27
4 Predictive Machine Learning for multiuser beamforming 28
4.1 Radiolmage-basedLISsensing . .. ... ... ... ... ... ... .... 28
4.2 Computervision-based LISsensing . . . . ... ... ... ... ... .... 29
421 Systemmodel .. ... ... ... 29
4.2.2 LISradioimage generation . . .. ... ... .. ... .. ....... 30
4.2.3 Received signal and noise modeling . . . . ... ... .. ....... 30
4.2.4 Modeldescription . . . . . ... ... 31
4.2.5 Noise averaging strategy . . . . . . . ..o 32

4.3 Numerical results and Discussion . . . . . . . . .. ... .. ... ... ..., 32
4.3.1 Scheduled vs simultaneous robot transmissions . . . . . ... .. .. 32
4.3.2 Distance amongrobotsimpact . . . .. ... ... .. L. 34

4.4 Conclusion . . . . . . ... e e 35
5 AAS Calibration 36
5.1 Related Works and Historical Development . . . . . ... ... ... ..... 36
5.2 System ldentification Perspective . . . . . . . .. ... oL 37
53 Problem Setting . . . . . ... .. 38
5.4 Bayesian Optimization of Combinatorial Structures . . . . . . ... ... ... 38
5.5 SimulationResults . . . . . . . . .. 41
5.6 Conclusionand Future Research . . . . . ... .. ... .. ... ....... 41

Dissemination Level: Public. Page 6



H2020 Grant Agreement Number: 813999
Document ID: WP4/D4.2 windmill

6 References 43

Dissemination Level: Public. Page 7



H2020 Grant Agreement Number: 813999
Document ID: WP4/D4.2 windmill

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

5.1
5.2

Exhaustive search procedures . . . . . . . . . ... . o 15
Beam training based from inverse fingerprinting . . . . . ... ... ... ... 16
The sub-6GHz and mmWave dominant paths and beams. . . . . . . ... .. 17
Preprocessing of the LIDAR pointcloud. . . . . .. ... ... ... ...... 18
Beam SNR prediction basedonbeam CC . . . . . .. ... .. ... ..... 23
Beam prediction based on channel charting in Non-Standalone systems . . . 24
True location and CC annotation with the best beam information . . . . . .. 25
Average RMSE of different predictors . . . . . .. ... ... ... ... 27
lllustration of performed image mapping . . . . . . . . . ... ... ... ... 30
Exemplary RGB image obtained at the LIS in a noiseless scenario . . . . . . 31
Computer vision algorithm workflow . . . . ... .. ... ... ... ..... 32
ECDF forradioimage sensing . . . . . . . . .. . ... ... ... ... 33
95% Confidence Interval of distance error for radio image sensing . . . . . . 34
Example of grey-box system . . . . .. ... Lo 39
BOCS convergence results for grey-box system of different complexity . . . . 41

Dissemination Level: Public. Page 8



H2020 Grant Agreement Number: 813999
Document ID: WP4/D4.2

List of Acronyms

5G 5" Generation

AAC Antenna Array Calibration
AAS Advanced Antenna System
ABF Analog Beamforming

ADC Analog-to-Digital Converter
AoA Angle of Arrival

BNP Bayesian nonparametric
BS Base Station

CC Channel Chart

CMD Collinearity Matrix Distance
CSI Channel State Information
DAC Digital-to-Analog Converter
DL Downlink

DNN Deep Neural Network

DPD Digital Predistortion

DR Dimensionality Reduction

ECDF Empirical Cumulative Distribution Function

FDD Frequency Division Duplexing
GP Gaussian process

GPR Gaussian Process Regression
HO Handover

HPA High Power Amplifier

IA Initial Access

ICBH Intra Cell Beam Handover
ICH Inter Cell Handover

IMD Intermodulation Distortion

Dissemination Level: Public.

Page 9



H2020 Grant Agreement Number: 813999
Document ID: WP4/D4.2

IRS Intelligent Reflective Surface
KNN K-Nearest Neighbour

LIS Large Intelligent Surface

LM Levenberg-Marquardt

LTE Long Term Evolution

LTI Linear Time Invariant

LUT Lookup Table

MIMO Multiple Input, Multiple Output
ML Machine Learning

mmWave Milimeter Wave

MSE Mean Squared Error

NAS Neural Architecture Search
NN Neural Network

NR New Radio

NSA Non Stand Alone

OTA Over-the-Air

PCA Principal Component Analysis

PIMC Passive Intermodulation Correction

QuaDRiGa Quasi Deterministic Radio Channel Generator

RF Radio Frequency

RIS Reconfigurable Intelligent Surface
RMSE Root Mean Squared Error

RX Receiver

SGD Stochastic Gradient Descent
SNR Signal-to-Noise Ratio

SVM Support Vector Machine

t-SNE t-Distributed Stochastic Neighbor Embedding

TDD Time Division Duplexing

Dissemination Level: Public.

Page 10



H2020 Grant Agreement Number: 813999
Document ID: WP4/D4.2

TX Transmitter
UE User Equipment
UL Uplink

Dissemination Level: Public.

Page 11



H2020 Grant Agreement Number: 813999 M
Document ID: WP4/D4.2 windmill

1. Introduction and Motivation

5" Generation (5G) New Radio (NR) supports beam-oriented cellular systems in which
beams transmitted towards and / or received by Base Station (BS) and User Equipment
(UE) can be flexibly configured. Beam selection is mainly performed by exhaustive and it-
erative search methods where each has own pros and cons [1].Through an Initial Access
(IA) phase a UE establishes a physical link connection to a BS. After the IA in order to en-
sure connectivity of a moving user, tracking the best beam pair between the UE and BS is
necessary. Therefore, in addition to inter cell Handover (HO), intra cell beam HO is needed.

As a direct consequence of the narrow Milimeter Wave (mmWave) beam-width, 5G systems
need to rely on precise alignment and tracking procedures to establish a reliable and high
throughput communication links. In the absence of estimates of channel matrices, which are
extremely costly to obtain in case of numerous antennas, beam selection is typically carried
out using iterative search procedures. These procedures introduce a large communication
overhead, especially in the the vehicular-to-infrastructure (V2I) communications systems, for
which mmWave communication is envisioned to be a key technology [2]. For this reason, in
chapter 2 we introduce a simple V2| system model to frame the mmWave beam selection
problem and we explain the limitations of conventional iterative search procedure. We then
list successful examples in which contextual information from sensors mounted on the vehi-
cles and the infrastructure is leveraged to reduce the beam selection overhead of iterative
search procedures, rendering mmWave communication efficient also in the V2I scenarios.

Recently, data driven methods which are capable of extracting meaningful information from
large volume of data has gained considerable attention in wireless communication [3]. With
presence of massive amount of Channel State Information (CSl) information, a novel frame-
work called channel charting which uses unsupervised learning tools to produce radio maps
of high dimensional CSI, can be exploited for radio resource management problems [4].
Channel Chart (CC) can be used in such applications as user grouping and HO that do
not require absolute location information. Beam selection is primarily carried out based on
the CSI feedback. Thanks to Machine Learning (ML) approaches and the CC concept the
problem could be solved without any feedback overhead. In this regard, first a stand alone
mmWave system is adopted and CC’s of beams are constructed. Then, using different ML
techniques, a Signal-to-Noise Ratio (SNR) predictor is trained based on CC of one beam
to predict the SNR of a UE at other neighboring beams. Depending on the SNR difference
of current beam and neighboring beams a HO decision will be made. Second, in a Non
Stand Alone (NSA) system where a sub-6 GHz assist mmWave system to provide a robust
communication is investigated and best mmWave beam is predicted based on CSI mea-
sured at the sub-6 GHz BS. The sub-6 GHz system’s CC is constructed and annotated with
mmWave system best beam information. A best mmWave beam predictor is trained on the
given information, connecting microwave band CSI with a predicted best mmWave beam.

On a related note, in massive Multiple Input, Multiple Output (MIMO), the base station is
equipped with a very large number of antennas. With the aim of pushing their benefits to
the limit and looking towards post-5G, researchers are defining a new generation of base
stations that are equipped with an even larger number of antennas. This gives rise to the
concept of Large Intelligent Surface (LIS) which designates a large continuous electromag-
netic surface able to transmit and receive radio waves. These large surfaces can be placed
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on walls/ceilings and are easily integrable into the surroundings. In practice, an LIS is com-
posed of a collection of closely spaced tiny antenna elements. While the potential for com-
munications of LIS is being investigated [5, 6], these devices offer possibilities which are not
being under study accurately, i.e., environmental sensing based on radio images [7]. The
large aperture and high number of antenna elements of LIS can be used for performing an
accurate environment sensing while providing a huge amount of data. In this way, ML and
deep learning are useful for understanding radio environmental maps. These radio maps
can be mappings of the signals into an image structure, describing the propagation envi-
ronment. This allow merging the computer vision field into wireless communications taking
advantage of state-of-the-art solutions for understanding image information. The input to
this computer vision algorithms can be addressed from different perspectives: CSl or recon-
struction of radio environmental maps to exploit convolutional neural networks which will be
discussed in details in chapter 4. Finally, we note that LIS is one of the technologies be-
ing considered for future 6G systems, which may change the relevant cost/benefit analysis
in that any sensing functionality is then expected to be added onto the system rather than
requiring explicit investment on extra dedicated hardware.

Correction of various Radio Frequency (RF) hardware impairments (both linear and non-
linear in nature) plays an important role in the operation of any modern wireless system,
especially in cases of beyond 5G (6G) systems. As without units such as Digital Predis-
tortion (DPD), Passive Intermodulation Correction (PIMC) and Antenna Array Calibration
(AAC) radio link performance will suffer significant degradation. Mathematical models for
aforementioned algorithms are learnt though process of system identification. Detailed in-
formation about the problem of hardware impairment correction is described in D4.1.A —
Joint Probabilistic Modelling of Wireless Channels and Hardware Impairments.

The remainder of this report is organized as follows. In chapter 2 mmWave beam selection
based on contextual information from sensors mounted on the vehicles in a V2| system
model is studied. In chapter 3 beam SNR prediction in a mmWave stand alone system and
best mmWave beam prediction in a NSA system are discussed. In chapter 4 the potential of
LIS as a beyond massive MIMO system is studied by leveraging its major sensing capabilities
under a specific industrial use case. In chapter 5 we study the problem of learning detailed
and interpretable models of grey- and black-box systems. Once learnt they can be used for
controller design or as parts of simulation environments. Specifically, this chapter targets the
problem of structure and parameter estimation of grey-box systems given a limited number
of observed samples. To solve this problem we employ a method of Bayesian optimisation of
combinatorial structures (BOCS). We demonstrate its performance in application to grey-box
systems and discuss how the BOCS technique can be further extended to support structure
learning in dynamical black-box systems.
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2. Contextual information for mmWave beam selection in

vehicle-to-infrastructure communication

In vehicular-to-infrastructure (V2I) communications, for which mmWave communication is
envisioned to be a key technology [2], beam selection and tracking are particularly chal-
lenging due to the high mobility of the receivers, which leads to reduced beam coherence
time [8]. In this scenario, conventional beam selection techniques, such as beam sweeping
or multi-level beam selection [9, 10] impose a significant overhead. Therefore, more effi-
cient beam selection techniques that can reduce the cost of iterative search procedure by
exploiting contextual information are of great interest. It has been shown that contextual in-
formation from sensors mounted on the vehicles and the infrastructure can be leveraged to
reduce the beam selection overhead. In the following, we introduce a simple system model
to frame the V2| beam alignment problem, we illustrate the conventional iterative search pro-
cedure and then show provide examples of different types of contextual information that can
be leveraged to reduce the alignment overhead.

2.1. System Model

To illustrate the beam selection problem we may consider an orthogonal frequency-division
multiplexing (OFDM) mmWave system with analog beamforming capabilities, where the BS
located on the street curb serves a vehicle in its coverage area utilizing N, subcarriers. Both
the transmitter and the receiver ends are equipped with antenna arrays with a single radio
frequency (RF) chain and fixed complex beam codebooks, which we denote by C; = {f; ,-C:’1
and C, = {w; jc=1 respectively. The downlink channel matrix from the BS to the vehicle over
the n’th subcarrier is denoted by H,.

For each precoder and combiner vector pair (/,j) € C; x C,, the resulting channel gain at

subcarrier n is determined by wf’H,,f,-, where (-)" denotes the conjugate transpose. We

then define the effective power gain matrix G € R whose (1, j)-th entry contains the
aggregate power gain over the N, subcarries for the transmitter-receiver codebook pair (/, j),
as

Ne
Gij= > |W/'H,f. (2.1)
n=1

The optimal pair of precoding and combining vectors is the one that maximizes the channel
gain,

(i*,j*) = argmax Gi,;. (2.2)

(1))

Without side information, the transmitter and receiver need to perform a search through the
C; x C, beam pairs in order to identify (/*, j*). In particular, the current 5G release exploits an
iterative search that sweeps in the angular domains at both receiver and transmitting ends
and measures the relative channel quality. In this setting, exhaustive search over all beam
pairs can be extremely costly given the size of the beam codebooks. In order to reduce the
overhead, hierarchical search procedures have been considered. These resort on a multi-
tier search, during which coarser and larger beams are firstly probed to roughly localize the
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Exhaustive Search Hierarchical Search

Figure 2.1: Exhaustive search procedures (left) sweep all the available beams at the trans-
mitting and receiver ends in order to find the best beam combination. Hierarchical search
procedures (right) work by refining the search space: beams with larger width (blue) are
used to find the direction with the largest gain and then narrower beams (orange) are used
to search within that angular sector.

receiving end and then they are refined using more directional beams in the most prominent
direction given by the previous search step. The exhaustive and hierarchical approaches are
depicted in Fig. 2.1.

Alternatively when side information is available, the goal is to refine the search space by
inferring a small subset of k beam pairs Sk C C; x C, such that (i*,j*) € Sk. This results
in a reduction of =~ in the search space of the beam selection procedure. Two metrics
to gauge the quallty of Sk as a function of its size k, are the top-k accuracy and top-k
throughput ratio. The top-k accuracy is formally defined as

A(k) = E[1{(i",]") € Sk}], (2.3)

and it measures the fraction of instances for which the best beam index is in the top-k
selector output. On the other hand, the top-k throughput ratio is defined as

B [maxes, 10g,(1 + Gij)]
E [logy(1 + Gi- )]

where G is the effective power matrix defined in (2.1) and all expectations are with regard
to the inherent randomness introduced by vehicles’ positions and channel realization. Note
that the top-k throughput ratio is a very informative metric for the problem at hand. In fact,
the numerator represents the throughput that can be achieved (at a zero dB transmit SNR)
by searching only among the top-k beams suggested by the contextual information; while
the denominator is a normalizing factor representing the maximum throughput achievable by
an exhaustive beam sweeping approach.

T(k) = (2.4)

2.2. Contextual Information for mmWave beam alignment

We now give notable examples of contextual information that can be used to enhance the
beam search procedure.
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Figure 2.2: Beam training based from inverse fingerprinting. [11].

2.2.1. Position Information

The most commonly available side information at vehicle side is the position information ac-
quired through the global positioning system (GPS). In [11], this information is used to apply
an inverse fingerprint scheme that is able to discard less promising direction and sweep
only those that are more likely to yield a robust communication link. The proposed ap-
proach leverages a fingerprint database that contains channel characteristics such as signal
strength or multipath signature at different access locations. The database can be obtained
at the road side unit (RSU) by requesting communicating vehicles (CV) to perform beam
training at different location in the coverage area. Once the dataset is generated, the pro-
posed beam alignment scheme works as depicted in Fig. 2.2. The CV probes the RSU and
sends its position information, upon reception, the RSU queries the pre-fetched database
and sends a sequence of candidates beams back to the CV for training. It is experimen-
tally shown that even modest size databases (in the order of 200-300 beam training phases)
are sufficient to attain satisfactory performance. Moreover, measurements obtained during
heavy traffic conditions positively transfer to mild and low traffic scenarios. Exploiting the
position based inverse fingerprinting, the training phase can be reduced to 30 beams in a
system with originally 256 available pairs.

2.2.2. Inertial Information

Inertial sensors measure the acceleration and angular speed of objects over different axes of
motion. Vehicles are often equipped with these sensors for safety and control purposes [12].
In the context of mmWave communication, inertial data can also be used to reconfigure an-
tenna arrays [13]. In the case of sharp beams, vibrations due to road asperities and the
titing of vehicles can misalign the receiver and transmitting ends, trigger costly search pro-
cedures. Exploiting inertial sensor, it is possible to track the orientation of the vehicle and its
pitch angle to compensate for this unwanted impairments. Using real world measurements
it is shown that thanks to inertial sensors it is possible to attain throughput almost equals
to the perfect alignment scenario. Furthermore, positional and motion information can be
jointly processed to further reduce the alignment overhead [14].
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Figure 2.3: On the left, the sub-6GHz and mmWave dominant paths. On the right, the sub-
6GHz beams associated to the strongest paths and the candidate mmWave beams using
the spatial information. Image from [16].

2.2.3. sub-6GHz Information

In future networks, the weaknesses of mmWave communication technologies will be miti-
gated by the existing sub-6GHz apparatus. Other than rendering the system more robust,
equipment operating in other frequency bands can be leveraged to provide side informa-
tion. For instance, a radar located at the BS and operating outside the millimeter spectrum
can be used to estimate the direction of arrival of vehicles and aid the beam search [15].
In [16], the authors assume the presence of digital MIMO system operating in the sub-6GHz
spectrum to back up the mmWave communication. The spatial information is then extracted
by the out-of-band measurements as shown in Fig. 2.3 and the most prominent directions
for the mmWave beams are predicted. The relation between sub-6GHz and the mWave
channel measurements can be contrived and difficult to characterize analytically. For this
reason, data-driven methods have been proposed to learn it directly from data. Artifical neu-
ral network can be trained using sub-6GHz channel measurements in order to predict the
best mmWave beams and blockage probabilities [17]. Tested and trained on 3D ray-tracing
datasets, data-driven methods are able to predict the best beam without training procedure
50% of the times and they can predict blockage with an error probability close to the irre-
ducible error.

2.2.4. LIDAR Information

Thanks to the recent surge of autonomous driving technologies, high dimensional sensory
information is nowadays commonly available also at the vehicle side. For instance, light
detection and ranging (LIDAR) is commonly used for autonomous navigation. LIDAR uses
a laser to produce a depth map of the environment and surrounding obstacles using delay
measurements of the back-scattered signal. Because of the data dimensionality and the
lack of analytical models that would relate LIDAR depth map to mmWave beams quality,
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Figure 2.4: Preprocessing of the LIDAR point cloud.

Table 2.1: Performance comparison between the state-of-the-art LIDAR based beam align-
ment solutions.

[Model [ A() | T() | AB) | T(B) |#params.|
[18,19] | 31.5+£2.6% | 46.1 £2.6% | 71.9+2.2% | 76.1 +1.9% | 403677
[20] | 52.3+1.9% | 70.3+2.6% | 85.3£0.9% | 90.8 + 1.5% | 7462
[21] | 59.5+0.5% | 79.9 £ 0.8% | 87.0 £ 0.3% | 94.6 + 0.8% | 30872

data-driven methods have been considered to effectively process LIDAR signals as side
information for beam search. In [18,19], a NN architecture was trained over simultaneous
LIDAR and ray-tracing channel datasets with a top-k classification metric to identify kK beam
directions that most probably include the beam resulting in the largest channel gain. In order
to reduce the computational cost and NN model size, a simplified classifier architecture that
can be trained in a distributed fashion using federated learning was proposed in [20].

Later, in [21] authors proposed a simplified LIDAR preprocessing technique reported in Fig.
2.4 and a convolutional neural network (CNN) architecture that was trained to exploit LI-
DAR and positional data in order to identify the best beam directions and reduce the beam
search overhead in V2] communication. This solution introduced various novelties in order
to increase the beam classification accuracy while at the same time reducing the number of
trainable parameters and computational burden, such as:

» A novel loss function, inspired by the knowledge distillation (KD) techniques [22], which
not only maximizes the prediction accuracy of the best beam index, but also its corre-
sponding power gain.

» A non-local attention scheme [23], which improves the beam classification accuracy,
specifically for the non-of-sight (NLOS) case.

A curriculum training strategy [24] which improves both the convergence speed and
the final beam prediction accuracy.

Simulation results on benchmark datasets show that, utilizing solely LIDAR data and the
receiver position, the NN-based beam selection scheme can achieve 79.9% throughput of
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an exhaustive beam sweeping approach without any beam search overhead and 95% by
searching among as few as 6 beams. The key performance indicator of the above discussed
solution are summarized in Table 2.1.

2.3. Conclusion

Beam alignment in the context of mmWave communication introduces a large communica-
tion overhead due to its costly search procedures and it represents one of the major chal-
lenges for 5G. This problem is exacerbated in the V2| communication domain, as mobility
reduces beam coherence time. For this reason, in this chapter we have formalized the beam
selection problem in a V2| system, and we explained why agnostic iterative search solu-
tion are doomed to fail in case of large antenna regime. We then listed alternative solutions
that embody in their search procedures contextual information such as position, inertial data,
sub-6GHz information and LIDAR scans. These solution are shown to be practical, to greatly
reduce the length of the search procedures and, in some cases, even rendering search not
necessary at all.
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3. Channel Charting-Based Beam SNR Prediction

Wireless communication using mmWave, with gigabit-per-second data rate promise, have
received considerable attention in the context of 5G and beyond. Beamforming [25] and
massive MIMO antenna arrays are expected to combat high path loss of mmWave bands as
well as other losses due to oxygen absorption and higher noise floor resulting from larger
bandwidth.

Beam management issue is discussed in [26], where a Kalman filter approach is proposed
to reduce alignment error and ensure more reliable connectivity as long as UE mobility is
moderate. Recently, out-of-band information has shown to be beneficial in mmWave channel
estimation [27]. Sub-6-GHz systems are more robust than mmWave bands in hard propa-
gation conditions, and suffer less from blockages. Thus, in order to have a seamless and
reliable connection integrating 4G Long Term Evolution (LTE) and 5G mmWave radio is ad-
vantageous.

In cellular networks user mobility is supported by HO. In 5G mmWave systems Intra Cell
Beam Handover (ICBH) which switches beams among one BS beams is considered in ad-
dition to Inter Cell Handover (ICH) where the serving BS is changed. With assumption of
autonomous beamforming at UE side, the UE beam is not under control of the BS. Impact of
BS beam change is not clear without determining all BS-UE beam pairs. Therefore, the BS
is not capable of determining the SNR of the best beam by measuring the UE transmission
in all the BS beams.

An efficient beam selection method is required to reduce the exhaustive beam swiping
method overhead since, in 5G NR a large number of beams are used for communication.
As introduced in Section 2 Location information has been shown to be beneficial for speed-
ing up the beam training. Location assisted beam management combined with Machine
Learning techniques is discussed in [28]. By leveraging CC which is a dimensionality re-
duction technique applied to collection of massive MIMO CSI to construct radio map of the
cell, we can devise a new method for prediction of the beam SNR. In [29] ICH based on the
predicted SNR is investigated; the SNR of a UE from a neighboring BS is predicted based
on the relative location information provided by CC. We explore the possibility of relative
location information for predicting best beam of a mmWave system.

This study is twofold; First, a stand alone mmWave system is investigated. The promising
result of ICH based on the predicted SNR motivated us to extend it to beam SNR prediction
based on CC. Second, in a NSA system best mmWave BS beam prediction is studied. We
consider best mmWave beam prediction for a UE, based on long term CSI measured by a
possibly different BS at a sub-6 GHz carrier.

3.1. System Model

For the sub-6 GHz communication, the BS has an array of P antenna elements and the UEs
have a single omni-directional antenna. In the sub-6 GHz frequency, the UEs perform pilot
transmissions and the BS measures the channel h, € CP*'. The CSI covariance of UE u at
the sub-6 GHz BS is computed as:

R, = E {h,h{}, (3.1)
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where the expectation E{.} is over spatial and frequency samples and (.)" denotes the
Hermitian conjugate.

For both stand alone and NSA systems we consider the mmWave communication system
with a single BS and U UEs. The BS has an array of M antennas and UE has N element
array antenna.

The MIMO channel between the BS and UE u at a subcarrier is H, € C"*N, The BS and
UEs are capable of beamforming. We assume that the BS codebook has M beams and UE
codebook has N beams. Beamforming vectors for the BS are w,, € CM*" withm=1.. M
and for a UE are v,, € CN*! with n = 1... N. Wideband beams are assumed at the BS, i.e.,
the same beam is used for all frequency samples. The UE chooses its best beam for every
subcarrier. The Discrete Fourier Transform (DFT) based codebook of size M and size N is

used at the BS and UE respectively. The codebook, C = [cq, ..., Cg] is shown as:
Cy= ;—5[1,4%8, @ g1, Q, (3.2)

where Q = M for the BS and Q = N for the UE.
The received signal from UE u when the BS uses beam m and UE uses beam n on the
subcarrier is then

Y8 =WHHWNX + 2, = h, X + 2y, (3.3)

where hy, , represents the effective channel coefficient for BS beam m and UE beam n,
x is the transmitted symbol with E{|x|?} = 1 and z, is additive white Gaussian noise. The
effective channel vector for receiving from UE u using beam v,, measured from all BS beams
is:

hY = WH,v,, (3.4)

where W = [wy, ..., wy] is the matrix with BS beamforming vectors as columns.
The UE selects it's best beam to transmit towards / receive from a BS beam w,, using the
function:
i = n(m) = argmax |h4, ,|°. (3.5)
n

Hence, the effective channel for a UE transmission depends on which BS beam it it assumes
to be transmitting to.
The average received SNR at BS beam m from a transmissions of UE u towards this beam

is then 1
el {1Mtnim|*} (3.6)

where o2 is the noise power. The expectation is taken over frequency / subcarrier samples
and over temporal samples taken from the fast fading process within a short time interval.
For a transmission towards BS beam m, the effective channel vector from UE u, measured
from all BS antennas then becomes

Ymu =

If a UE has a single antenna, the best BS beam can be directly measured at the BS. How-

ever, when the UE has multiple antennas, and autonomously uses a beamformer, the BS
cannot unilaterally measure and find the best beam towards the user. The BS can measure
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the elements in (3.7) from UE transmissions, but the BS cannot measure from transmis-
sions towards beam w,, what the channel coefficients would be if the UE were to transmit
towards w,, with m’" # m. There is a beam-mismatch problem arising from UE autonomous
precoding; the precoder v,y may or may not be the same as V.

3.1.1. Basics of Channel Charting

A CC [4,30] preserves the relative neighbor relations of the UEs in the physical domain by
creating radio maps. We use channel features to create CCs, which capture large-scale
channel effects. For instance, a covariance matrix at the BS can be used to find the channel
features of the the UEs.

In order to construct a CC, first a dissimilarity matrix D at the BS side is formed which con-
tains the pairwise CSl dissimilarities between UEs in the cell. Using a dimensionality reduc-
tion technique e.g. t-Distributed Stochastic Neighbor Embedding (--SNE) and dissimilarity
matrix D, a representation of UE in the cell is obtained.

To perform CC in a beam-based manner, effective channels must be measured from multiple
beams. This can be done, if the BS is equipped with multiple RF chains. For simplicity,
we assume that the BS is able to measure the effective channel from all of its M beams,
obtaining an M x 1-dimensional effective channel h, ., when it measures the output from
all M beams with the UE transmitting towards BS beam m using n(m). According to which
BS beam w,, the UE is transmitting towards, the effective channel will vary. As a result
of autonomous UE beamforming, the effective channel at the BS is determined by the BS
beam that the UE transmits towards. Hence, a separate CC is considered for each BS beam,
using the received signals from (3.7) with UEs transmitting towards the particular BS beam
W, using UE beam vj, that is best for it.

Beam-specific CCs are obtained by calculating the beam-m specific covariance matrices
from effective channels of UEs that are transmitting towards beam w,;:

I:‘m,u = E{h%(m)(hrg(m))H}i (3-8)

where u is the UE index. Then beam-specific dissimilarity matrix D, is created using the
Collinearity Matrix Distance (CMD) metric [31]; the dissimilarity for two UEs u and v’ with
beam based covariances R, , and R, , is the Frobenius norm of normalized covariance

matrices:
- Tl’(F'!m,uRm,u’)

HRm,U||F|| Rm,U’HF,
where Tr indicates trace operator. A specific CC for beam m is a 2D representation of the
CSI of the set of UEs by feeding the dissimilarities to the Dimensionality Reduction (DR)
algorithm.
In the NSA system, as we have single antenna UEs in the sub-6 GHz band, there would
be only one CC for the cell. Dissimilarities between the sub-6 GHz covariance matrices R,
of the UEs as features, and the Log-Euclidean distance to measure feature dissimilarity is
used. The dissimilarity between the covariance features R, and R, of two UEs u and v/
using Log-Euclidean distance measure is given by [32]:

dyw =||1ogRy — log Ry ||F, (3.10)

where the log indicates matrix logarithm. Then, the CC can be constructed from the dissim-
ilarity.

dmn(Rm,us Rmw) = 1 (3.9)
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3.2. Framework for CC-Based Best Beam Prediction

In 5GNR, a moving user served by a BS may experience switching between several beams
of the BS. Beam HO is assumed to performed in a network centric manner, where the BS
selects the target beam for a UE. In the stand alone system where only mmWave BS are
present, the basic principle is that each BS has a CC constructed offline and the CC locations
are annotated with other neighboring beam’s SNRs. Then, a ML model is trained to predict
the SNR of a target beam. Finaly, the annotated CC and the SNR prediction model are used
to make an ICBH decision.

Figure 3.1 illustrates the network centric model. During training phase, CCs are created,
annotated with neighbor beam SNRs , and SNR predictors are trained. In this regard, for
each beam we have the CC locations and the beam SNRs as the input of SNR predictor
and the output is the neighboring beams SNR. Then, in the online phase, using the current
beam CC location and SNR, the target beam SNR is predicted. In this phase, a UE first
establishes its connection to a beam. Then an SNR mapping function is used to predict the
SNR of a target beam. After predicting SNR of all possible beam targets for the UE, an ICBH
decision based on SNR difference is made.

=== =

\ Beam m CC annotated with SNR Online phase ,
| of beam m’ beam m beam m

SNR; SNR SNR;
z Predictor

\_ Beam CCs o’
<0 _ A

BS beams Out of/sample
SNR of beam location z;
UE SNR of beamg SNR ,

beams i
CCofbeamm | Predictor

Training phase E

Figure 3.1: Beam SNR prediction based on beam CC: (Left); Constructing of beam based
CC. (Middle); CC annotation and SNR prediction (the offline phase). (Right); Beam SNR
prediction based on beam CC (online phase) [33].

In the NSA system, for the sub-6 GHz BS a CC is constructed and the mmWave system’s
best beam information is added to CC locations. During an offline phase all information is
gathered in a central control unit. Therefore, in the offline phase CC locations are annotated
with mmWave BS best beam IDs and MLs are trained. Then, in the online phase for a new
UE a prediction algorithm predicts the best beam ID of mmWave system based on the CC
location of the UE. Figure 3.2 shows the different phases of best beam ID prediction in a NSA
system. Three parts of training phase are: CC construction, annotation withe mmWave best
beam ID, and training of beam ID predictor. In the online phase, first a UE is mapped to a
CC location and then the best beam ID is predicted based on the CC location.
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Figure 3.2: Beam prediction based on channel charting in Non-Standalone systems. (Left);
a street segment served by a multi antenna sub-6 GHz and mmWave BSs. (Middle); Training
phase with CC construction and annotation. (Right); Online phase showing the best beam
prediction for a new UE [34].

3.2.1. Machine Learning Algorithms

In the stand alone system, SNR prediction is formulated as a regression problem. Given the
beam m annotated CC, the BS finds a function that predicts the neighboring beam SNRs
of a UE served by beam m. To do so, Neural Network (NN), Gaussian Process Regression
(GPR), and K-Nearest Neighbour (KNN) are used to predict the target beam SNR. As CC is
dimensionality deducted form of CSlI, there is possibility to reduce the dimensionality of CSI
to any number other than 2 (2D CCs are mostly used to show the neighboring information
preserving ability of the CC). Thus, we evaluate the effect of higher degrees of dimension-
ality reduction on beam SNR prediction, as well. Also, for NNs different back propagation
algorithms have various convergence speed and complexity. Stochastic Gradient Descent
(SGD) and Levenberg-Marquardt (LM) [35] algorithms are used to minimize the output loss
function. The LM has been shown to converge faster for moderate sized NNs but with higher
computational cost.

In the NSA system, a classification problem is formulated and NN , Support Vector Machine
(SVM) classifiers as well as KNN are considered. KNN as a low complexity predictor is
considered for best beam ID prediction. The best beam ID classification is a multi class
problem. Thus, in the SVM classifier which inherently is binary classifier, some changes are
needed to be applied. One-vs-One method for the SVM is considered where every pair of
two classes are classified by a binary classifier, and then based on a voting approach, the
class that gains the majority of votes for an input is assigned to it.

3.3. Simulation and Results

The simulation is performed by generating a physical layout and CSI using the Quasi De-
terministic Radio Channel Generator (QuaDRiGa) simulator. The simulation setting is sum-
marized in Table 3.1. As for the stand alone system the BS is located at [-114, —110] m,
whereas for the NSA 2 GHz network is located at [—100, —100] m, the mmWave BS of is
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Table 3.1: Simulation Parameters

Parameter sub-6 GHz mmWave
Center Freq. 2 GHz 28 GHz
Subcarrier BW. 15 KHz 240 KHz

No. of Subcarriers 600 256

BS antenna 8 ULA 32 ULA

BS antenna element pattern | Omnidirectional 3GPP TR 36.873
UE antenna Omni-directional 8 ULA
Scenario 3GPP 38.901 UMa-NLOS

-10F

N
S
T

y-coordinate of the chart location
y-coordinate [m] of the physical location

@
8
T

40 \ \ \ ! ! ! ! ! ! L
50 -40 30 -20  -10 0 10 20 30 40 50 0
x-coordinate of the chart location x-coordinate [m] of the physical location

Figure 3.3: (Right); The true physical locations marked with their best BS beams with differ-
ent colors. For example, beam 32 is the best beam for the locations marked with red. (Left);
CC annotated with best beam information using t-SNE DR.

at [5,30] m and UEs are uniformly scattered in a street segment between [0 10] m on both
the x-axis and the y-axis. For each UE , in order to compute the covariance matrix, 100
small-scale fading samples are collected.

In the stand alone system, for each beam one CC is constructed from the beam-specific
dissimilarity matrix. CMD distance is used for computing the dissimilarities. t-SNE dimen-
sionality reduction is used for CC construction. Then, the CC locations are annotated with
neighboring beam SNRs during offline phase.

In the NSA system, 2 GHz channels are used to calculate dissimilarities, and a CC is con-
structed, annotated with mmWave best beam ID information in the offline phase. Similarly,
t-SNE dimensionality reduction is used to construct CC. However, the dissimilarity matrix is
obtained based on the log- Euclidean distance. Figure 3.3 shows the resulting annotated
CCs obtained with t-SNE dimensionality reduction.

3.3.1. Beam SNR Prediction

NN, GPR, and KNN are used to create the SNR predictors. Mean Squared Error (MSE)
is used as the loss function and an exponential kernel is used in the GPR predictor. NN
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Table 3.2: Performance of Different Predictors Based on the 2D True Physical Location and
10D t-SNE CC.

Predictor | KNN 10 | GPR | NN3 10 LM | NN3 100 SGD
Phys Loc. | 0.26 0.25 0.24 0.47
t-SNE 0.35 0.29 0.32 0.52

activation function is hyperbolic tangent. Three layers are considered for NNs with various
number of neurons and are called as "NNHidden layers-Number of neurons in each hidden
layer-Training algorithm”, e.g., NN3 10 LM is a NN with three hidden layers and 10 neurons
in each hidden layer using LM algorithm. Root Mean Squared Error (RMSE) is used as
the performance measure for predictors and the input to SNR predictors is assumed to be
various dimension of CC from 2D to 10D. As in the area of interest there is only 8 dominant
beam, the predictions are limited to these 8 beams and the reported average RMSE is
averaged over 8x8 pairs of beam predictors. A more detailed discussion is provided in [33].
Figure 3.4 shows the average RMSE of target beam SNR prediction as a function CC dimen-
sion for the test data set. A slight improvement is achieved as we increase the dimension of
the input CCs. Using SGD, increasing the network size is beneficial, however, it has basi-
cally twice the error in the LM algorithm. It is expected as LM is more effective in optimizing
NN weights. Also, due to the smooth variation of SNR in the street segment, KNN is also
showing a good performance.

We have considered relative location-based beam SNR prediction. As a benchmark, true
location-based beam SNR prediction is also investigated. Comparison result is shown in
Table 3.2. NN with LM is the best physical location based predictor with 0.24 dB RMSE. GPR
is the best CC based SNR predictor, with only a 0.05 dB gap to the best true location-based
prediction. Thus, the performance loss of CC based beam SNR prediction, as compared to
prediction based on ground truth physical location, is negligible.

3.3.2. Best Beam ID Prediction

Beam prediction function using NN, SVM, and KNN predictors is created. Gaussian kernel
for SVM and different NN sizes are used. As for KNN two cases are considered; either
looking at the nearest neighbor for predicting the best mmWave beam ID or 10 nearest
neighbors. Results of average prediction accuracy are shown in Table 3.3. The best NN
structure for true location is NN3 20 and for t-SNE is NN3 50. The performance benefit from
using NNs for beam prediction is that when predicting based on CC, the accuracy is equal
to the case when using the true location.

By investigating top-2 and top-3 best beam accuracy, we reach 98% and 99% for both true
location and CC based predictions. Accordingly, this information can be used to reduce the
best beam search time [34].

3.4. Conclusion
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Figure 3.4: Average RMSE of different predictors as function of beam CC dimension for
t-SNE DR.

Table 3.3: Prediction Accuracy of Different Predictors

Predictor Best NN SVM KNN(10) KNN(1)
t-SNE 90.2 88.2 86.6 86.8
True location 90.8 89.3 88.4 87.1

Neighboring beam SNR prediction and best beam prediction in mmWave systems based on
CC were studied. In mmWave systems, narrow beams are needed to be tracked to ensure
the connectivity of UEs. To do so, a handover process is needed to be initialized between
different beams. In this regard first, a stand alone mmWave BS is considered where its
beam’s CCs are constructed and annotated with neighboring beams’ SNR. Then in an offline
phase a predictor is trained based on the CC locations to predict the SNR of neighboring
beams. In an online phase, the trained SNR predictor is used to predict neighboring beam
SNRs and based on the SNR difference an ICBH is decided. Second, in a NSA mmWave
system best BS beam is predicted based on sub-6 GHz cell CC. A radio map of sub-6 GHz
system i.e. CC is annotated with best beam information of mmWave BS during offline phase
and a predictor is trained to predict the best mmWave beam based on sub-6 GHz BS CC. In
the online phase, the best mmWave beam is predicted. In both cases it has shown that there
is a small gap between performance of the CC-based predictions and true location based
predictions.
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4. Predictive Machine Learning for multiuser beamforming

MIMO technology has been widely studied in the literature since it can significantly improve
data rates and reliability of wireless communication systems. The current tendency in wire-
less network designs is based on increasing the number of antennas at base stations i.e.
acquiring a theoretical benefit of usage of MIMO systems. It comprises of using large arrays
for a proportional increase in the SNR with respect to the number of elements N under the
far field assumption [36].

By deploying base stations with a huge number of antennas, massive MIMO arises to obtain
larger array gains and perform an accurate spatial multiplexing of users as well as exploit
spatial diversity to take advantage of the channel hardening effect. Since the seminal paper
by Marzetta [37], massive MIMO became a reality, being one of the key enablers for future
wireless networks [38].

The promising benefits of these systems in principle have led to potential base station de-
ployments with an increasing number of antennas beyond conventional massive MIMO.
Hence, current research leads with new concepts such as holographic MIMO, Large In-
telligent Surface (LIS) or Intelligent Reflective Surface (IRS), also known as Reconfigurable
Intelligent Surface (RIS), emerging as a natural evolution of classical massive MIMO. In this
deliverable, we focus on LIS which refers to a surface which integrates a vast number of
antennas into a limited aperture (considered as a continuous electromagnetic surface) while
IRS consists in a surface compounded by tunable circuits that are able of altering the char-
acteristics of the incoming signals in a desired way. While the potential for communications
of LIS is being investigated, these devices offer possibilities which are not being under study
accurately, i.e., environmental sensing.

4.1. Radio Image-based LIS sensing

Providing an integrated system which combines sensing and communication capabilities
might be one of the key enablers for the future 6G networks. Its high spatial density of an-
tennas and large array aperture can be exploited to perform sensing in an alternative way.
In a wireless context, an LIS can be described as a structure which uses electromagnetic
signals interacting with the scatterers (via reflections) in order to obtain a profile of the envi-
ronment. Then, the resulting superimposed signal is used to obtain a high resolution image
of the propagation environment. Note the LIS elements are observing the CSl information to
conform these images. What is more, the LIS spatial resolution has been proven to provide
e.g., high positioning accuracy [39]. Furthermore, one of the main advantages of using radio
image-based LIS sensing is its ability to capture the environment in an accurate way. When
using this approach, the complexity of the system is reduced to using information repre-
sented as an image. This provides a great opportunity to take advantage of computer vision
for understanding radio image information.

Computer vision approaches are suitable in terms of understanding digital images and ex-
traction of high-dimensional information from the real world [40]. The image data can take
many forms, such as frames of a video or views from multiple cameras. In this case they
can be seen as snapshots of the radio propagation environment.
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On a related note, the goal of image processing is to strengthen or compress image/video
information by using pixel-wise operations like transforming one image into another by fil-
tering. Furthermore, there is no extraction of meaningful information from those pixel-wise
operations. However, the goal of computer vision is to extract meaningful information from
images/videos (i.e. understand the content of digital images) [40]. There is a vast range of
applications in the literature to determine whether a specific object is present or not during
a specific image or scene in a video, they are commonly known as object detectors [41].
These kind of algorithms can apply to take advantage of useful information of LIS images,
for instance performing the tracking of the patterns obtained in the surface images. Com-
puter vision is not limited to pixel-wise operations which are often far more complex than
image processing.

Those complex operations are often summarized into feature detectors which can provide
rich information about the contents of the image/video. The goal of ML (from which computer
vision is a subset) is to optimize differentiable parameters so as that a specific loss/cost
function is minimized. ML is strongly related to image processing and computer vision. As an
example, convolutional neural networks (CNNs) are using all three techniques, convolutions
are from image processing as they work on per small pixel neighborhood basis, the process
of extracting image content is from computer vision while the kernel parameters are adjusted
using ML techniques and common back-propagation optimization.

We conclude that the combination between computer vision algorithms and image process-
ing techniques for the preprocessing of the input radio-based LIS images can be the key for
exploiting the advantages of studying the channel characteristics as an image.

4.2. Computer vision-based LIS sensing

In the last sections, we highlighted one of the main enabling features of 6G will be radio sens-
ing. With the aim of demonstrating the usefulness of LIS, radio based imaging and computer
vision, we here present a baseline problem in order to analyze the sensing potential of LIS.

4.2.1. System model

Let us consider an industrial scenario where R robots are supposed to follow some prede-
termined fixed routes. Assume that, due to arbitrary reasons, we would like to monitor their
positions in the route. The goal is to be able to track them based on the sensing signals
transmitted by the R target devices.

In order to perform the detection, we assume that a M antenna elements LIS is placed
along the ceiling, whose physical aperture comprise its whole area. In this way, we have a
projected view of the environment in a 2D plane. The sensing problem reduces to determine,
from the superposition of the received signals from each of the robots at every of the M LIS
elements, the (x, y) coordinates (a.k.a the position) of the R robots involved in the scenario.
The superposed complex baseband signal received at the LIS is given by

R
y=>) hx +n, (4.1)
r=1
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Figure 4.1: lllustration of performed image mapping

with x, the transmitted (sensing) symbol from robot r (we consider x, = 1 without loss of
generality), h, € C"*" the channel vector from a specific position of robot r to each antenna-
element, and n ~ CA (0, o2ly) the noise vector. Please note we are considering a narrow-
band scenario.

4.2.2. LIS radio image generation

According to the radio-image sensing technique, we can interpret the received signal through-
out the LIS as an image by mapping the complex resulting superposed signal in (4.1) to the
RGB components of a color image. In this way, we can create an image by mapping the 1/Q
components of the signal and power values (I/Q/RSS) such that / = R, Q = G and RSS = B.
To that end, we apply min-max feature scaling for each layer of the color image (I/Q/RSS -
R/G/B) to map the signals into the range of [0, 255], in which the value of each pixel m; for
i=1,..,Mand k =1, ..., N, positions of the robot R is obtained as

(Vi — Yo (Mhaax — mMIN)-‘ ’ (4.2)

mjx = ’mem + c c
yMAX,k - yMIN,k

where yf, are the elements of y, ¢ = {/, Q, RSS} component, in which y/}55 = [|h;x + nj.J?,
Myuax = 255 and my,y = 0, and

Yuaxk = MaX Y Yawe = min Y&, (4.3)
i {i=1,...M}

are the maximum and minimum values from a point p, along the surface. Figure 4.1 shows
an illustration.

This strategy allows preserving the spatial information of the signal, as every antenna el-
ement is directly mapped to a pixel value, whose positions correspond to the one of the
antenna in the physical LIS deployed in the ceiling. An exemplary image is shown in Figure
4.2 for R=1.

4.2.3. Received signal and noise modeling

To simulate this scenario, we rely on ray tracing simulations to account for the multipath
propagation phenomena and compute the rays in the most reliable way. For this matter, we
use the commercially available software ALTAIR FEKO [42].
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Figure 4.2: Exemplary RGB image obtained at the LIS in a noiseless scenario

In this way, the complex electric field arriving at the /-th antenna element, E;, can be regarded
as the superposition of each path. Assuming isotropic antennas, the complex signal at the
output of the i-th element is therefore given by

/ )\ZZI ~
y,' = FZOE, + N, (44)

with A the wavelength, Z, = 120~ the free space impedance, Z; the antenna impedance, and
n; is complex Gaussian noise with zero mean and variance o2. For simplicity, we consider
Z; = 1Vi. Finally, in order to test the system performance under distinct noise conditions,
the average SNR over the whole route, 7, is defined as’

)\2 T M
7 4 ZoMT o2 ZZ Eil (4.5)

t=1 i=1

where T is the number of time steps and M denotes the number of antenna elements in the
LIS.

4.2.4. Model description

We introduce an ML model to perform the position estimation task based on the radio-based
images obtained at the LIS. As Figure 4.2 shows, a concentric circular pattern is obtained
result of the robot transmission in the scenario. This pattern has a characteristic shape that
can be tracked by training an object detection algorithm in a simple way. Object detection
is a technology related to computer vision and image processing that deals with detecting
and locating instances of semantic objects of a certain class (such as humans, glasses, or
buildings) in digital images and videos. In a similar way, There is a vast range of algorithms
to perform the tracking of the concentric circle, but we have chosen to retrain YOLOv3 [41]
due to its proven lower prediction time. The LIS deployed in the ceiling generates the radio
images (according to Section 4.2.2) allowing using YOLOV3 to predict the bounding boxes
around the robots transmission patterns. Then, by computing the center of the predicted
bounding boxes, we obtain an inference of the (x, y) coordinates. Figure 4.3 shows the
workflow in both the training and prediction stage.

This is equivalent to averaging over all the points px.
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Figure 4.3: Computer vision algorithm workflow

In our considered problem, the dataset is obtained by sampling the 1/Q components at each
element of the LIS while the R robots move along the trajectories. Hence, the dataset con-
sists of radio image snapshots. To train the algorithm, we provide the groundtruth bounding
boxes generated from the positions of the robots in the scenario for every specific image in
the dataset.

4.2.5. Noise averaging strategy

The presence of noise may be critical in the radio image sensing, since it impacts consider-
ably in the image classification performance [43].

Trying to mitigate its impact, let us assume the system is able to obtain S extra samples at
each channel coherence interval vV p to perform an S-averaging. Note that, if S — oo, then

Vikl oo = Eliklhisd = hix, (4.6)

meaning that the noise variance at the resulting image has vanished, i.e., the received su-
perimposed signal at each antenna (conditioned on the channel) is no longer a random
variable. Observe that in this way the image preserves the pattern. This effect is only pos-
sible if the system would be able to obtain a very large number S of samples within each
channel coherence interval.

4.3. Numerical results and Discussion

For the following results, we deploy an LIS in the ceiling whose physical aperture is M =
259 x 259 and we use S = 100 extra samples to reduce the noise contribution. Here the
underlying assumption of using the entire ceiling is necessary to perform a direct mapping
between the real positions and the inferred (x, y) positions (pixels) in the image.

4.3.1. Scheduled vs simultaneous robot transmissions

We here present as a baseline a comparison of the sensing performance by tracking R = 1
vs R = 3 robots following their predefined routes to check the robustness of the obtained
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Figure 4.4: ECDF for radio image sensing for R = 1 vs R = 3 robots, with fixed LIS aperture
of M =259 x 259 and S = 100 samples

pattern when every robot transmits by turns in a scheduled manner against a simultaneous
transmission of the 3 under different 7 = [0, 10] dB conditions.

Figure 4.4 shows the Empirical Cumulative Distribution Function (ECDF) of the Euclidean
distance between the predicted and the groundtruth positions in the test set for a scheduled
vs a simultaneous transmission. The results show the sensing system is able to perform
a multi-robot tracking with a little compromise of the accuracy in positioning in comparison
to a scheduled scheme. In the 7 = 10 case the accuracy in positioning is almost identical
(R =1/3), while in the worst 7 = 0 scenario the 80% of the results are under an error of 12
cm when R =1 and around 16 cm when R = 3. This is thanks to the LIS physical aperture,
which allows obtaining a high resolution image that creates a pattern discernible while 3
robots are transmitting in the scenario. The results seem quite promising as under 80% of
the results are around 16 cm in the worst case while around 10 cm in the best case. Please
note, the performance of the system may be improved by increasing the S extra samples,
also increasing the antenna density in the physical aperture. The results show that even with
a simultaneous robot transmission, the study of the channel characteristics for positioning
under different 7 scenarios seems like a promising solution to address the task. In terms of
the detection performance, an mAP = 100% has been acquired for the 4 cases, meaning no
robots were missed in the detection.
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Figure 4.5: 95% Confidence Interval of distance error for radio image sensing for R = 2
robots, with fixed LIS aperture of M = 259 x 259 and S = 100 samples

4.3.2. Distance among robots impact

Finally, we leverage the system performance when robots are separated at a certain distance
among each other. We fix R = 2 robots transmitting their sensing signal in a5 = 10/0 dB
scenario.

Figure 4.5 shows the 95% confidence interval of the Euclidean distance between the pre-
dicted and the groundtruth positions in the test set for R = 2 different robot separations,
showing the error in both axis. It shows that there is a common behavior regardless of the 7
conditions. In this plot, the point represents the mean while the bars represent the variance
w.r.t to it. Here, the 2 m case gets the worst performance and beyond 3 m the performance
is almost the same. The highest mean error (2 m) is around 9 cm for the most suitable
conditions case, which is an accurate performance. Similarly, in the worst conditions, the
mean error is around 20 cm, which is also a good accuracy. Variance of the results augment
in the poorest 7 due to the impact of noise and interference due to the proximity of robot
transmissions. Please note, a distance between robots lower than 2m may have no interest
in the industrial setting. In terms of the detection, an mAP = 100% was obtained.?

4.4. Conclusion

2For some related works, please refer to [7]
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Large Intelligent Surfaces are a key ingredient in current studies for improving communi-
cations in the forthcoming 6G paradigm. However, one of the main characteristics of 6G
resides in the ability of sensing. LIS are a really useful tool for capturing the radio propa-
gation environment as we have demonstrated this technology allows to represent the sense
information as an image, something that decreases complexity and permits to use image
processing tools for studying the characteristics of the radio environment. What is more,
the presented use case shows that machine learning algorithms, concretely computer vision
ones, are a powerful tool to take into account when using an image-based LIS sensing ap-
proach. Future lines can be of interest, for example, location assisted analog beamforming
according to the user position radio map. Besides, a further analysis of the images can be
of interest for determining the optimal pattern of antenna elements deployment along the
whole surface. Please note the inter-antenna spacing might affect the performance once the
number of elements is too few so the expected circular pattern is no longer recognizable.
Autoencoders for image super resolution [7] can be of interest for reducing the physical
aperture of the LIS deployed in the ceiling.

Dissemination Level: Public. Page 35



H2020 Grant Agreement Number: 813999 M
Document ID: WP4/D4.2 windmill

5. AAS Calibration

Successful deployment of novel Advanced Antenna Systems (AAS) can not be accom-
plished without correcting RF impairments within the hardware. These impairments include
phase noise, active and passive intermodulation distortions, in-phase/quadrature imbalance
and manufacturing imperfections of antenna arrays [44—47]. In the latter case, RF connec-
tions between Digital-to-Analog Converter (DAC) / Analog-to-Digital Converter (ADC) units
and radiating elements can have varied lengths (group delays, phase delays) and other
defects, resulting in different multiplicative complex gain and phase distortions across the
bandwidth of the signal. Additionally, erroneous antenna element placement causes mutual
coupling effects. As a result, in Time Division Duplexing (TDD) systems, Downlink (DL) and
Uplink (UL) wireless channel responses (within the same coherence interval) become dif-
ferent and the reciprocity property no longer holds, which complicates the wireless channel
estimation process [48].

These hardware defects also negatively affect Frequency Division Duplexing (FDD), Analog
Beamforming (ABF), RIS and other systems. Notably, the general fidelity of beamforming
patterns [47,49] and the quality of source detection with Angle of Arrival (AoA) estimation al-
gorithms [48,50] degrade due to such hardware defects. The compensation of these specific
distortions falls into domain of Antenna Array Calibration (AAC) models and algorithms.

5.1. Related Works and Historical Development

The early concepts of defining AAC, including mutual-coupling and blind methods, have first
appeared in context of military radar arrays.

Efstathopoulos and Manikas, for example, improved the concept of Principal Component
Analysis (PCA)-based blind array calibration by reducing the required amount of external
UL signals to a single moving UE. This scheme only assumed the presence of a single
angular component within the movement of the UE [51]. Such correction takes into account
all RF impairments of the array without requiring any additional form of signal overhead.
While this operating principle makes the proposed scheme applicable in both TDD and FDD
systems, it does not support of Transmitter (TX) calibration, and its computational complexity
significantly increases with the number of Receivers (RXs).

Mutual coupling (also known as self-calibration) methods represent a majority of recent
works in the field. Luo et al. provided a comprehensive analysis of this methodology. They
formulated the problem of finding an interconnecting network of mutual coupling measure-
ments, and employed combinatorial optimization to prove that the “star” interconnection net-
work is optimal for full calibration of AAS with an arbitrary geometry [48].

Wei et al. further exploited the Over-the-Air (OTA) concept by relying on UL training se-
quences to calibrate a network of analog phase shifters. Their solution allows to estimate
phase deviations with affordable computational complexity, and propose algorithms that in-
clude Cramer-Rao lower bound estimations [49]. In a similar work, Tian et al. proposed
analytical estimators for both amplitude scaling and phase drifts within RF chains [50]. Shan
et al. applied an autoencoder Deep Neural Network (DNN) to the DL pilot matrix, which can
reconstruct the measured RF impairments [52]. Similarly to other DNN solutions, there is
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no proof that solution will generalise to systems different from the one investigated by the
authors.

Moon et al. addressed disadvantages of other OTA methods, by leveraging existing wire-
less channel estimation protocols [47]. In that paper, calibration is achieved by continuously
changing the pre-coding values and collecting all the estimated phase responses with a
shared reference. Specifically, the phase response of the array is measured while chang-
ing the phase shifter states, which allows to estimate the phase mismatches and calibrate
the phased array. However, it is unclear how well this algorithm scales with the number
of antenna elements and complexity of the precoder. Furthermore, there is a “cold-start”
problem related to the convergence of the calibration algorithm in the context of dynamic
environments, because the precoder has to be continuously updated to support moving UE.
In the works related to AAS calibration system model of impairments often assumes absence
of Intermodulation Distortions (IMD). This is a valid assumption if we consider that algorithm
units such as DPD and PIMC are present within the system. The first compensates active
IMD caused by High Power Amplifier (HPA) [53, 54], in TX of both TDD and FDD systems.
The second corrects passive IMD in RXs of FDD systems that are generated in defective
components of RXs RF chains'.

Predominant number of DPD and PIMC algorithms are model-based, where said models are
defined by Linear Time Invariant (LTl) and nonlinear units (e.g. static memory polynomials,
adaptive functions controlled by lookup table (LUT)). AAC can also be addressed in a similar
way.

5.2. System Identification Perspective

But what defines system identification? By definition, it is a process, in which an interpretable
model of a system with unknown dynamics and parameters is learned from labelled training
examples [55,56]. System identification also intertwines with statistical learning models and
methods for time-series predictive analysis [57], such as Gaussian processes (GPs) [58] and
other Bayesian nonparametric (BNP) methods. The latter becomes especially important
if we want to predict outputs, or derive robust control algorithms for nonlinear dynamical
systems, as BNP methods provide a unified view and tools for robust predictive models with
uncertainty quantification properties. Examples of such nonlinear systems are diverse and
range from robotic control to biological and wireless applications [56,59—-61].

In some cases it is possible to use prior knowledge to determine the model and then es-
timate its parameters from the data. For example, time series prediction models such as
the nonlinear autoregressive exogenous model and the state-space model can be used to
learn the dynamic and measurement models, while temporal versions of GPs can be directly
used to form a regression on the data in the time domain. Alternatively, parametric models
(e.g., DNNSs) can be learnt automatically via an architecture search [62—64]. In other cases,
explicit prior information is unavailable, limiting further application of known models or esti-
mation methods. In the context of system identification, this scenario becomes even more
complex if it is not possible to choose or control the input (excitation) signals.

"For more information visit project deliverable: D4.1.A — Joint Probabilistic Modelling of Wireless Channels
and Hardware Impairments.
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In this section we investigate a problem, where the structure of a nonlinear grey-box system
together with it's parameters must be learnt in a data-driven fashion. We solve this task by
approaching it from an optimisation perspective, and applying the framework of Bayesian
optimisation of combinatorial structures (BOCS). Originally proposed by Baptista et al. [65]
— it allows to obtain an approximate optimiser of the acquisition function, employing ideas
from convex optimization [66, 67] and capturing the interaction of structural elements. We
demonstrate its performance on several cases and discuss how the BOCS technique can
be extended to support structure learning in black-box systems.

5.3. Problem Setting

We consider an open-loop identification problem of a nonlinear grey-box block-structured
system. This system consists of two unit types: linear time-invariant and static nonlinear
functions? [68] (figure 5.1 (a)). The system is generated randomly and unit connections are
defined by an adjacency matrix S of directed acyclic graph. In it (5.1) each row represents
feed-forward connection from one of above-mentioned units to others and zeros/ones indi-
cate existence or absence of connections respectively. Each unit is parameterised randomly
by a set of weights drawn from a Gaussian distribution — px, where k is the unit’'s number.
This system is also assumed to be single input single output® and stable*.

We are given vectors of N data points Xy, Yy = {xn,yn}ﬁﬂ, where x are delayed input
samples of a fixed dimension and y are system’s output scalar values [69]. Prior information
includes only exact number and types of units within a system.

The task is twofold — estimate the adjacency matrix § and system parameters {p}k ; given
a limited number of observations.
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5.4. Bayesian Optimization of Combinatorial Structures

Consider an expensive-to-evaluate black-box function f over a discrete structured domain D

of feasible points, where the goal to find the goal is to find a global optimizer argmax, ., f(x).

2In polynomial form.

3BOCS methodology has a theoretical support for multiple inputs and outputs (MIMO) settings. On practice
it would require to firstly, understand (through derivations) how to fit MIMO into the structural model of (5.1).
Secondly derive additional constraints to limit the complexity of the problem.

4Stability is assured during the generation process within the simulation environment.
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Figure 5.1: (a) — Example of grey-box system (9 units); (b) — Structural model within the
BOCS framework; arrows indicate the flow of information between components.

Suppose that observing x provides independent, conditional on f(x), and normally dis-
tributed observations with mean f(x) and finite variance o2. For simplicity, assume that
D = {0,1}9, where x; equals one if a certain element / is present in the design and zero
otherwise. For example, we can associate a binary variable with possible coupling between
two components in a multicomponent system, or with an edge in a graph-like structure.

The statistical model of BOCS is based on equation 5.2. The model consists of so-called
“interaction” terms, quadratic in x € D, while regression model is linear in a = (a,-, a;j) € RP

Withp=1+d+<g).

fu(X) = ag + Z ajXj + Z QXX (5.2)
Ji ij>i
To quantify the uncertainty in the model, Bayesian treatment can be applied to «. For
observations (x“, y) (x))) with i = 1,...,N, let X € {0,1}N*P be the matrix of predic-
tors and y € RN the vector of corresponding observations of f. Using the data model,
yO (x) = f (xD) + 9 where e ~ N (0,02), we have y | X, o, 02 ~ N (Xev, 62 ly).
One disadvantage of using such model is that it has © (d?) regression coefficients which
may result in high-variance estimators for the coefficients in case of scarce data. To assert
a good performance even for high-dimensional problems with expensive evaluations, it has
been proposed to use a sparsity-inducing prior, specifically a heavy-tailed horseshoe prior
[70],
ax | B2, 72,0 ~ N (0, B57%0%)  k=1,..,p
7,0k ~C*0,1) k=1,...,p (5.3)
P (02) =02
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where C*(0, 1) is the standard half-Cauchy distribution. In this model, the global (7) and the
local (k) hyper-parameters individually shrink the magnitude of each regression coefficient.
Additionally, auxiliary variables v and ¢ are introduced to re-parameterize the half-Cauchy
densities using inverse-gamma distributions. Finally conditional posterior distributions for
the parameters are defined as:

al ~N(A'XTy,0?AT)
A= (X"X+x."), %, =7%diag (5, ..., 55)

N+p (y—Xa)(y—Xa) o' 'a
2 o~ *
oall /G( 5 5 L

1 a?
2 o k _
Bic | IG(1,Vk+27202> k=1,...,p

P 2
T2|-~/G<p 1, Z )
5 k=1
yk\w/e(nnlz) k=1,...p
B

1

The role of the acquisition function is to select the next sample point in every iteration.
In case of BOCS, it is based on Thompson sampling (samples a point x with probability
proportional to x being an optimizer of the unknown function). Since belief on the objective
f at any iteration is given by the posterior on «, we sample a; ~ P(a | X,y) and want to
find an argmax xepfy,(X). Since applications often impose some form of regularization on Xx,
problem is restated as argmax yepfn(X) — AP(x ) where P(x) = ||x||1 or P(x) = ||x||5 and thus
cheap to evaluate. Then, for a given o and P(x) = ||x||1, the problem is to obtaln an

argmax f,(x) — AP(x)

xeD
xeD F i
where x € {0,1}9. Similarly, if P(x) = ||x||3, the problem becomes argmax ycp Z, X +

Dijsi (cvj — Adj) xix; Thus, in both cases we are to solve a binary quadratic program of the
form

argmax x"Ax+b'x, (5.6)

xeD

where D = {0,119,
Finally,the BOCS algorithm can be summarised as follows. Using an initial dataset of Ny
samples, BOCS first computes the posterior on f based on the sparsity-inducing prior. In the
optimization phase, BOCS proceeds in iterations until the sample budget N« is exhausted.
During iterations t = 1,2, ..., it samples the vector «; from the posterior over the regression
coefficients that is defined by the parameters in equation 5.4.
Afterwards, BOCS computes an approximate solution x® for max, 1y fo, — AP(x) as fol-
lows: first it transforms the quadratic model into an SDP, thereby relaxing the variables into
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vector-valued variables on the (d + 1) dimensional unit-sphere. This SDP is solved (with
a predescribed precision) and the next point x¥ is obtained by rounding the vector-valued
SDP solution. The iteration ends after the posterior is updated with the new observation y®
at x0,

5.5. Simulation Results

Similarly to other system identification problems, we consider a mean squared error (MSE)
cost function defined in (5.7), where y(t | t — 1,0) is the predictor of the output defined by
the model structure and parameters.

N
Fu (X Yo P.8) = TS () — gt | £~ 1,P,8)) 57)
t=1

Here, the BOCS is an appropriate choice for the task. Since local search algorithms do
not necessarily converge to a global optimum and mathematical programming (e.g., convex
programming) typically cannot be applied to black-box functions nonlinear in parameters.
Furthermore we can exploit combinatorial structure of the problem (figure 1-b). Figure 5.2
shows the BOCS convergence process for two randomly generated grey-box systems. In
both cases, the optimum is reached within a limited number of function evaluations. Addi-
tionally, we must also note that extended set of simulations showed stability in MSE. Upon
convergence, it remains within 10~° — 10~ range.
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Figure 5.2: BOCS convergence results for grey-box system of different complexity: (a) 15
units, 100 parameters, (b) — 30 units, 200 parameters.[To be published in BAYSM 2021
proceedings]

5.6. Conclusion and Future Research

We have studied the performance of the BOCS framework for grey-box parameter estima-
tion. Consequently this research serves as a foundation for study of methodology’s ap-
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plicability to black-box systems. Specifically, how well it will perform in the task of Neural
Architecture Search (NAS) compared to alternatives, such as those described in works of
Zhou et al. [71] and others [72-76] is an open question. Other areas of research include
BOCS in online learning setting, where the structure of the system can change over time
and the multi-objective case, in which the system system has multiple inputs and outputs.
We think that the solution to these questions may be a combination of BOCS with other
existing frameworks, for example constrained or “lifelong” Bayesian optimisation [77,78].
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