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1. Introduction

1.1. The twofold problem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Development and deployment of any wireless system can’t be accomplished without modelling of
wireless channels between dedicated transmission points. Beyond 5G (6G) networks [1]–[4] are
not exceptions. As radio frequency (RF) hardware complexity and scale of systems grow (e.g.
massive MIMO [5], reconfigurable intelligent surfaces (RIS) [6] and other variations of advanced
antenna systems (AAS) [7]), so do the same properties of radio channel models [8]–[11].
While we use channel simulations [12]–[14] to estimate metrics such as bit error rate (BER),
throughput, latency and tune system parameters in different scenarios [15], [16], in some
cases however performance evaluation based on models differs from real measurements. These
divergences are commonly caused by uncorrected hardware impairments or their residuals
[17]–[19], since in reality correction methods can rarely fully mitigate said distortions. Of
course problem of modelling wireless systems with hardware impairments taken into account
is not new and has been addressed in multiple studies. For example in [20] authors model
all RF impairments as a single matrix embedded into pre-coding, which can be suitable for
AAS calibration purposes, but not for modelling of non-linear dynamics1 like intermodulations.
In [23] term of residual transceiver hardware impairment is defined as an additive stochastic
process. While the idea of impairment generalisation is important, this term doesn’t include
non-additive or multiplicative distortions. One of the key studies in this area, conducted by
Björnson et. al. [24] analyses the capacity and channel estimation accuracy of massive MIMO
systems with non-ideal transceiver hardware. There, impairments are modelled by an additive
distortion noise that is proportional to the signal power at each antenna. Despite advantages
like mathematical tractability, it would be difficult to estimate how individual distortions or
their specific combinations effect the system’s performance metrics. Demir and Björnson in [17]
consider estimation of the effective channels with non-linear distortion characteristics of both
base station (BS) and user equipment (UE) taken into account. Characteristics are modelled
as quasi-memoryless polynomials and simulation tool is based on deep neural network (DNN)
framework. Work is novel, but not without critical disadvantages: model can only support
estimations based on fixed channel realisations and behavioural models of power amplifiers (PAs)
(used by the authors) do not take into account memory effects. Paper by Mollén et. al. [25]
presents a rigorous framework for analysis of non-linear effects caused by PAs in MIMO uplink
(UL) with the presence of blockers. Work by Jiang et. al. [26] focuses on calibration of AAS.
There, a theoretical analysis is conducted on the impact of calibration matrix on UL channel
estimation accuracy. Zhang et. al. [27] study an impact of residual hardware impairments on the
capacity of MIMO communication systems, especially on those operating at high signal-to-noise
ratio (SNR), like high-rate systems. Authors derive an ergodic capacity expression for a MIMO
system with residual transceiver impairments, which applies for any finite number of antennas
and the entire SNR range. In works by Ali et. al. and Challita et. al. [28], [29], authors present
useful overviews of future challenges in beyond 5G systems and how they can be addressed by
machine learning (“ml”) techniques. The last pair of studies, however only briefly introduces
problem of hardware impairment mitigation, not including it’s relation to wireless channel

1E.g. non-linear autoregressive (AR) models [21], [22].
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modelling.
Many other works relevant to the subject exist and their analysis leads to following conclusion.
On the one hand we can see that such solutions are tailored to specific cases and even attempts
to generalise distortions are limited to individual classes (e.g. only additive, only memoryless or
only stationary models). Thus, further complicating development of new models or extension
of existing ones to ever growing number of beyond 5G scenarios [30], [31]. On the other hand,
studies focusing on distortion mitigation techniques2 rarely consider a rigorous analysis of effects
on wireless link metrics.
Consequently, we ask – is it possible to treat the twofold problem of simulating both channel and
impairments within a single mathematical framework? While supporting a set of conditions3.
To answer this question in section 2 we first classify types and properties of hardware impair-
ments, together with an overview of recent key correction techniques. Then, part 3 covers
modelling methodology based on gaussian processes (GPs), including advanced methods like
deep hierarchies and automatic model selection. Additionally, in section 4, we provide an
overview of existing programming libraries for GP based modelling. Part 5 concludes this report
with a summary and a set of possible future research directions.

2These studies are referenced in section 2.
3These conditions and reasons behind them are described in section 3.
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2. RF impairments and channel models

2.1. Antenna array impairments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Despite relatively novel usage of AAS, problems which accompany them are not new and date
back to radar systems from late 1990s [32]–[34]. Errors related to the electrical and geometrical
characteristics of the antenna arrays, can severely degrade quality of beamforming, source
detection and angle-of-arrival (AOA) estimation algorithms [26]. Electrical errors occur if
analog RF connections on paths between radiating elements and analog-to-digital converter
(ADC)/digital-to-analog converter (DAC) have different lengths (group delays, phase delays) and
manufacturing imperfections resulting in multiplicative complex gain and phase distortions across
signal’s bandwidth. Array itself contributes to above-mentioned values if element placement
differs from original design, causing parasitic mutual coupling effects [35]–[38]. Additionally,
in time division duplexing (TDD) systems, reciprocity property of wireless channel breaks, as
downlink (DL) and UL channel responses (during the same coherence interval) become different
thus complicating wireless channel estimation process [39], [40].
Mathematical model for said impairments (in point-to-point (A and B) communication case) is
easily defined as a set of equations 2.1, with visualisation provided in figure 2.1. Where NA and
NB are antenna numbers, C(t) – reciprocal effective electromagnetic channel and TA, TB, RA,
RB – filters modelling linear RF imperfections of transmitter (TX) and receiver (RX). Also fA
and f ′A denote the up- and down-conversion frequencies at side A, whereas fB and f ′B are up-
and down-conversion frequencies at node B. In the time domain, a similar set of equations is
obtained by replacing products by convolutions and matrices by linear filters in the equation set
2.1.

G(t, f) = RB(f)e
2πjf ′BtC(t, f)TA(f)e

−2πjfAt

H(t, f) = RA(f)e
2πjf ′AtC(t, f)TTB(f)e

−2πjfBt (2.1)

Figure 2.1: Reciprocity model, figure was taken from [39].

Considering a simple mathematical model, what makes antenna array calibration (AAC) a
challenging task in modern MIMO systems? Two factors contribute to the answer: absence of
feedback connections and non-stationary operating conditions. The first is technically challenging
as individual feedbacks and respective ADCs would be required to accompany each antenna
port. In massive MIMO cases, where antenna arrays may contain e.g. 512 radiating elements,
feedbacks would result in internal RF interferences and unacceptably high hardware cost. The
second exists because of changing operating temperature, ageing of RF hardware and varying
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output power. Thus making pre-recorded “factory” calibration tables [41] and similar “classical”
methods [42] almost obsolete.
It is also important to distinguish between so-called relative and absolute calibrations [43].
Conditions of absolute calibration [44] require exact compensation for the imperfections of
each RF chain independently. For example it can be achieved via external reference sources or
(currently undesired) feedback RF chains. Relative calibration [45], [46], on the other hand, has
more relaxed conditions. There parameters of imperfections can be estimated relatively to a
chosen channel of the system or a reference source. Such calibration can be done via exchange
of channel measurements between devices (BS, UE), self signal transmission or other similar
techniques. These conditions (constraints) push researchers and engineers into development of
novel solutions. Here we highlight most prominent examples of such studies.
Several of them, despite being old can be still considered relevant. For example methods
proposed in studies by Manikas et. al. [47]–[49] are suitable for calibration of TXs, but can be
applied to both TDD and frequency division duplexing (FDD) systems. Among other advantages
are scalability and absence of hardware requirements for it’s operation, like antenna element
symmetries [50]. Solution requires knowledge of signal source AOA, given this information
expected received signals of an ideal array can be computed. Comparing these with the actual
received signal, it is possible to derive the difference due to the uncertainties and correct
them. Modern iterations of these algorithms also consider a combined estimation of AOA and
imperfections [51].
Another methodology exploits parasitic mutual coupling effects and symmetries in antenna array
designs. For example in [52] authors show a fully digital AAS capable of maintaining its initial
calibration by monitoring its quadrature imbalance with mutual coupling based measurements.
In their case symmetry of antenna array is not required, but only relative calibration can be
performed, without array’s geometrical imperfections taken into account. A most prominent
example in this category is a work done by Vieira et. al. [53], [54]. There, an iterative maximum
likelihood (ML) asymptotically efficient algorithm is proposed. It outperforms existing estimators
in mean squared error (MSE) and sum-rate capacity sense. Authors also verify performance on
massive MIMO test-bench and analyse statical properties of calibration errors.
Rest of the modern methods rely on exploitation of existing system information (e.g. channel
state information (CSI)) or modifications of wireless transmission standardisation. In [55]
Moon et. al. introduce new online “over-the-air” calibration method which relies on channel
estimation in wireless communication in order to measure the magnitude and phase response
of the phased array system. Therefore, calibration can be online without a necessity to pause
the communication and does not need RF feedback circuitry. While method was verified
experimentally it is not clear whenever it can provide absolute calibration or not. In another
study, Shan et. al. [56] develop a DNN architecture1 to diagnose the calibration state of a
massive antenna array. There, model is designed to learn an optimized linear DL pilot matrix
and a non-linear reconstruction mapping function from measurements to the original sparse RF
impairments. Interested reader will get additional insight into array calibration methods from
following studies: [58]–[61].
With further literature analysis it becomes apparent, that it is impossible to satisfy all calibration
constraints (from the start of the section) with existing methods in pursue of absolute calibration.
We can however go back to principles of table-based calibration method as we know that

1Original idea to use DNNs for calibration was proposed by Bertrand et. al. [57] but it was applied in a
different way, compared to [56].
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it provides absolute calibration in stationary setting and analyse how it can be improved.
Hypothetically if we measure not only phase and amplitude components of RF channels, but also
same parameters during different operating conditions it would result in calibration table with
all possible system states. Obviously it would be impractical for massive MIMO systems as a
result would form a multidimensional array because of experimental test-bench complexities and
number of state measurements. In this case applicability can be achieved with sparsification of
measurements, smart interpolation to restore skipped measurements and prediction of temporal
(sequential) system states (temperature, output power, ageing effects). Such properties can only
be found in hierarchical models with universal functional approximation properties.

2.2. Intermodulation distortions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The largest impact on wireless links’ performance is caused by intermodulation distortions
(IMDs). These effects are caused by a non-linear processes in analog RF hardware and result in in-
band distortions, spectral regrowth, unwanted spurious emissions, increased occupied bandwidth,
adjacent channel interference and most importantly reduction of effective throughput [62]–[64].
Two primary sources of IMDs exist: active and passive. The first are caused by PAs [65], [66],
in TXs of both TDD and FDD systems. The second occur in RXs of FDD systems and are
generated in defective RF components of RX RF chains. Passive intermodulations (PIM) can
originate from different sources [67]–[73]:

• shared circuitry (e.g. duplexer);

• materials exhibiting hysteresis upon exposure to reversing magnetic fields;

• components with manufacturing defects for example a cracked solder joints or poorly made
mechanical contacts;

• RF connectors or when conductors made of two galvanically unmatched metals come in
contact with each other;

• metal flakes or shavings inside RF connections;

• loose mechanical connections effected by mechanical vibrations;

• metallic objects (corrupted by rust, moisture or oxidation) in near field or beam directions
(external sources);

Despite the fact that IMD sources and their relations to useful signals are different (PIM is an
additive distortion) modelling methods are similar. Considering this, in context of this report we
will only cover aspects of PA IMD correction process commonly known as digital pre-distortion
(DPD). Operating principles of DPD are based on inverse modelling of PA underlying functional
and feedback parameter estimation process. In it a portion of the output signal from PA is fed
back and subtracted from the original signal to force the output to be a linear replica of the
input signal [74]. Feedforward linearisation is similar, but instead of adding correction signal to
a PA input, it is added afterwards [75]. Illustrations of both approaches are given in figure 2.2.
From system identification perspective RF front-end with multiple PAs is a non-linear non-
stationary dynamical system [22]. For example short-term memory effects are caused by
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Figure 2.2: DPD principle and learning architectures, figures were taken from [76] and [77].

input and output matching circuitry, long term effects by bias networks and non-stationary
non-linearities by active components (transistors) [78], [79].
Since IMDs components produced by PAs of previous wireless systems generations can be
derived analytically [80]–[82], it is possible to manually select a structure of parametric model
and leave parameter estimation for algorithms. Essentially making DPD a “grey-box” parameter
estimation task.
But for beyond 5G more appropriate term would be a “black-box” model selection, as IMD
generation processes become analytically intractable. In other words: it is difficult to transform
a prior domain knowledge into interpretable models. This statement is supported by increased
complexities of modern PAs and challenging operating scenarios. Those include:

• multi-band and ultra wide-band input signals which lead to high order IMDs and their
combinations [83]–[88];

• dynamic operation modes, defined by abrupt changes in absolute power and configuration
of input signals [76], [89], [90];

• massive MIMO scenarios raise issues of cross-channel leakages, cross-talks and model
scalability [91]–[95];
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In addition we also have two constraints. Firstly the model and it’s adaptation must be done in
online fashion or in “ml” terms – support continual learning [96]. Secondly input (excitation)
signals can not be directly controlled, limiting number of applicable system identification
methods. Of course it is difficult to satisfy all above-mentioned requirements in context of a
single model. This is a main reason why DPD has many specialised solutions ranging from
behavioural to beamforming methods. While the latter are interesting, goal of spatial (beam
domain) DPD [97]–[99] is to form a beam pattern in which IMDs are “sent” in directions free of
UEs or other RX equipment. Partly this method relies on existing PA models (not derivation of
new ones) because of that we focus on overview of behavioural models in this report.
Throughout the years multiple formulations of behavioural models have been proposed. They
can be categorized according to several criteria, such as the inclusion or exclusion of memory
effects, types of non-linearities and number of compositional terms in the model [79]. Figure
2.3 contains examples of such terms: look-up-tables (LUTs) (adaptive non-linearities) [100],
branching unit delay lines, memory polynomials [87], Volterra series and Wiener-Hammerstein
[101] combinations.

Figure 2.3: DPD behavioural model’s terms, figures were taken from [79].

With growing popularity of DNNs researchers began to apply them to DPD tasks. These
contributions range from simple experimental studies [102] to proposals of more elaborate
architectures [103].
In [104] authors explore complexity and trade-offs between DNN and memory polynomial DPDs
based on adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) metrics.
Experimental results also demonstrated that former requires less hardware utilization when
compared to a similarly performing polynomial model. Wu et. al. [105] test residual DNN
architecture [106] and provide detailed performance comparisons with other models like time
delay DNN by Wang et. al. [107]. In short study by Hongyo et. al. [108], authors compare
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ACLR for different activation functions and network dimensions. Finally, in the attempt to
support MIMO scenario and additional impairments (crosstalk, I/Q imbalance, DC offset)
Jaraut et. al. [109] show DNNs having better generalisation properties when compared to
traditional models.
Countless other works in this domain exist and while many specialists consider DNN to be
generalisations over behavioural models, they are not exactly correct. From statistical “ml”
perspective selection of such architectures is a way to select priors on functions [110] or a way
to embed domain knowledge about the data. From functional analysis side, both model types
are parametric compositional (hierarchical) functional representations and as such they share
same disadvantages. Namely: generalisation, scalability and lack of generative properties2.
All DPD models are capable of compensation IMDs, but each of them is designed to tackle a
specific scenario. Consider a multi-band model. Naturally it should be applicable to single-band
signals but there are no guarantees of it being useful for dynamic power operation mode. In
same way not every MIMO model can be scaled up to a massive MIMO.
Thus process of DPD model selection is inherently redundant, repeating with each new PA
model and signal configuration. Eventually RF systems may grow too complex, making it
impossible to manually find parametric model structure. Solution to this problem can be found
in neural architecture search (NAS) [111], however it will only produce a discriminative model,
unsuitable for sampling or random realisations.
If our gaol is to combine channel and impairment models in a context of a single simulator, we
have to use a modelling framework designed to address these disadvantages.

2.3. Channel modelling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before proceeding with selection of a modelling methodology, below we provide a list of relevant
wireless channel simulators.

1. QuaDRiGa — [12], [112] — Supports wide range of beyond 5G cases (e.g. vehicular and
industrial), three dimensional propagation, continuous channel evolution and transition
between propagation scenarios.

2. NYUSIM — [113], [114] — Supports spatial consistency, human blockage and O2I penetra-
tion loss. The multiple reflection surfaces method is used to update small-scale parameters
in the spatial consistency procedure. Four-state Markov model simulates human blockage
events. O2I penetration loss use a parabolic model, useful for indoor scenarios.

3. NYU Real-time Massive MIMO Channel Emulation — [115], [116] — Channel simulation
is combined with real operating RF hardware. Test-bench includes both baseband and
RF front-end devices under test (DUT)3.

4. PyLayers — Site specific radio channel simulator. Supports custom antenna patterns and
wireless radio standards.

2For usage in wireless channel simulators
3Researchers who are specifically interested in PA modelling may use RF WebLab (hosted by Chalmers

University of Technology) to acquire respective datasets.
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5. PyCraf — [117] — Package for functions and procedures related to spectrum-management
compatibility studies. Includes implementations of ITU-R recommendations for calculation
of path attenuations and interference levels.

None of them contains built-in support for simulated impairment (and correction) models. It
can be argued that simulations must stay decoupled or even separated, but from our perspective
this eventually leads to unnecessary complexity and unreproducible results. Especially when
specialists research effects of RF hardware imperfections on link’s performance metrics.
In summary, we see that question of joint modelling of RF impairments with wireless channels
remains open, as current academic channel simulators do not include such distortion models
and industrial versions are not available for public. To solve this problem we (further) propose
a data-driven methodology, capable of solving this task.
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3. Gaussian processes

3.1. Universal functional approximation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variety of distortion classes, wireless channel scenarios and desire to model them in the same
framework calls for a modelling tool with a universal functional approximation property. The
idea of the universal modelling can be traced back directly to Hilbert’s thirteenth problem [118]
and it’s solution in a form of Kolmogorov-Arnold representation theorem [119], [120]. This
notion, together with evidence we’ve provided in section 3 leads to a belief that DNN is a
suitable modelling framework for a “full channel”1 modelling problem. But are DNNs right
modelling tools for our task? Can they satisfy our requirements, are there any alternatives?

• Full channel model must be a controllable generative model from which we can sample new
realisations (examples) of wireless channel, whether it is an impulse response or complex
valued time series samples.

• If we want to update the model with a new type of distortion – chosen framework must
be able to incorporate it in a data-driven fashion.

• Same applies to novel channel scenarios, like dynamic UE or non-stationary environment.

• Due to various constraints it is difficult to obtain large training dataset in domain of
wireless communications, so a modelling tool must support small datasets and continual
learning [96], [121], [122].

• Consequently model should be prune to overfitting [123].

• Also we would like to assess (and calibrate) model discrepancy, address mis-specification,
perform uncertainty quantification and if possible have an interpretable model [124].

With these conditions taken into account it becomes apparent that instead of DNN optimal
choice would be to use bayesian non-parametric (BNP) modelling, specifically – GPs [125]–[128]2.
Further we describe basics of GP based modelling and it’s advanced extensions: kernel search
and hierarchical GP models. As all of them are general purpose “ml” algorithms, meaning that
they can be applied to any data-driven problem, including “full channel” modelling.

3.2. Gaussian processes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GPs are a simple and general class of models of functions, in other words a GP is any distribution
over functions such that any finite set of function values f (x1) , f (x2) , . . . f (xN) have a joint

1For consistency we will refer to modelling problem of a wireless channel together with RF hardware
impairments as a “full channel” modelling.

2Extended information from following subsections can also be found in theses of Duvenaud, Daminau, Vafa
and Frigola [125], [129]–[131]
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Gaussian distribution [123]. A GP model, before conditioning on data, is fully specified by its
mean and covariance functions (kernels).

E[f(x)] = µ(x) (3.1)
Cov [f(x), f (x′)] = k (x,x′) (3.2)

Usually the mean function is assumed to be zero, since uncertainty about the mean function
can be taken into account by adding an extra term to the kernel. After accounting for the mean,
the kind of structure that can be captured by a GP model is entirely determined by its kernel.
The kernel determines how the model generalizes to new observations. Choice of covariance
function is incredibly large, such that a correctly chosen kernel function can specify a wide range
of models. For example, linear regression, splines, Kalman filters and even DNNs are examples
of GPs with specific kernels or their compositions.
The crucial property of GPs that allows us to automatically construct models is that we can
compute the marginal likelihood of a dataset given a particular model, also known as the
evidence [132]. The marginal likelihood allows one to compare models, balancing between the
capacity of a model and its fit to the data [133], [134]. The marginal likelihood under a GP
prior of a set of function values [f (x1) , f (x2) , . . . f (xN)] := f(X) at locations X is given by:

p(f(X) | X, µ(·), k(·, ·)) = N (f(X) | µ(X), k(X,X)) (3.3)

= (2π)−
N
2 × |k(X,X)|−

1
2︸ ︷︷ ︸

controls model capacity

× exp

{
−1

2
(f(X)− µ(X))>k(X,X)−1(f(X)− µ(X))

}
︸ ︷︷ ︸

encourages fit with data

This multivariate Gaussian density is referred to as the marginal likelihood because it implicitly
integrates (marginalizes) over all possible functions values f(X), where X is the set of all
locations where we have not observed the function.
To make prediction we can “ask the model” which function values are likely to occur at any
location, given all (or a finite set of) previous observations. By the formula for Gaussian
conditionals the predictive distribution of a function value f (x?) at a test point x? has the form
of:

p (f (x?) | f(X),X, µ(·), k(·, ·)) = N (f (x?) | µ (x?) + k (x?,X) k(X,X)−1(f(X)− µ(X))︸ ︷︷ ︸
predictive mean follows observations

,

(3.4)
k (x?,x?)− k (x?,X) k(X,X)−1k (X,x?)︸ ︷︷ ︸

predictive variance shrinks given more data

)

Sampling a function from a GP is also straightforward. A sample from a GP at a finite
set of locations is just a single sample from a multivariate Gaussian distribution, given by
previous equation. Probabilistic perspective does not necessarily mean that we are assuming
the function being learned is stochastic or random, but it helps with uncertainty quantification
and calibration.
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To conclude this section, in table 3.1 we compare advantages and limitations of GP based
modelling.

Table 3.1: GP properties

Advantages Limitations
Analytic inference: predictive posterior dis-
tribution can be computed exactly in closed
form, rare property, even for BNP models.

Gaussian predictive distribution: in
some cases we want to use non-gaussian pre-
dictive distribution, for example a classifica-
tion task.

Integration over hypotheses: overfitting
isn’t an issue, compared to parametric models.

Slow Inference: matrix inverse time –
O (N3), where N is number of samples.

Models are analytical. Manual kernel selection.
Model selection: computation of marginal
likelihood of the data given a model allows
model comparison.
Closed-form predictive distribution:
GPs can be combined with other models.
Expressivity: model wide range of func-
tions.

At first glance it may seem, that limitations 1 and 2 overshadow all advantages, but it’s not
true, as solution lies in usage of approximate inference methods [135]–[139]. Such methods leave
the prior distribution of the GP model unchanged and instead enforce sparse structures in the
posterior approximation though variational inference. This gives O (M2N +M3) computation
and O (MN +M2) storage withM inducing points. Moreover, they allow to perform mini-batch
training by sub-sampling data points. Their detailed description can be found in works of
Titsias and Hensman et. al. [140]–[143]. Technique also opens the way for new types of models,
such as GP models suitable for billion point datasets [144] or convolutional GPs [145], where
translation invariance is encoded by summing over GPs that take image patches as inputs.
In [146] Keyon Vafa proposed a deep gaussian process (D-GP) sampling algorithm based on
Markov chain Monte Carlo (MCMC) sampling to circumvent the intractability hurdle. There
predictive means and covariances are sampled to approximate the marginal likelihood, relying
on automatic differentiation techniques to evaluate the gradients and optimize given objective.
As a part of the procedure, every GP is replaced with the fully independent training conditional
(FITC) GP [147], so the time complexity for layers (L) and nodes per layer (H) is O (N2MLH)
as opposed to O (N3LH) Recently, Shi et. al. have introduced a new GP framework, allowing
to increase the number of inducing points under a fixed computational budget. It is based on
decomposing the GP prior as the sum of a low-rank approximation using inducing points, and a
full-rank residual process [148].
In summary, all disadvantages of GP models can be addressed in multiple ways, the choice of
solution however, must depend on the modelling problem itself.

3.3. Kernel selection
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To successfully apply kernel learning algorithms, users have to specify the parametric form of
the kernel and this requires a prior knowledge. In other words considerable expertise in the
specific task. But even with it, selection may very well become a trial and error process.
Thankfully, it is possible to reformulate the kernel learning problem as one of structure discovery,
and automate the choice of kernel form [149]. Given properties of kernels, search space can
be defined compositionally in terms of sums and products of a small number of base kernel
structures. This provides an expressive modelling language which concisely captures many
widely used techniques for constructing kernels. While, main work in this direction is being
conducted as a part of the “Automated statistician” project3, key principles of the kernel search
are described in study by Duvenaud et. al. [149]. We summarise them below.
Firstly, four base kernel families are considered: squared-exponential, periodic, linear and rational-
quadratic [123] (visualisation of sampled functions, covariance matrices and one composite kernel
can be seen in figure 3.1). So, any algebraic expression combining these kernels using sums and
products defines a kernel family, whose parameters are the concatenation of the parameters for
the base kernel families.

Figure 3.1: One dimensional samples drawn from different kernels with their associated
covariance matrices, figure was taken from [129].

Secondly, search procedure begins by proposing all base kernel families applied to all input
dimensions. Sub-expression term S is used to describe any new kernel combination and B

3Automated statistician project official website – automaticstatistician.com
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denotes any base kernel family.

1. Any S can be replaced with S + B.

2. Any S can be replaced with S × B.

3. Any B may be replaced with any other B′.

Algorithm specified in original authors study, searches over this space using a greedy search:
at each stage, it chooses the highest scoring kernel and expands it by applying all possible
operators. Search operators are motivated by strategies researchers (engineers) often use to
construct kernels, for example:

• Rule 1: One can look for structure, e.g. periodicity, in the residuals of a model, and then
extend the model to capture that structure.

• Rule 2: One can start with structure, e.g. linearity, which is assumed to hold globally, but
find that it only holds locally.

• Rules 1 and 2: One can add features incrementally, analogous to algorithms like boosting
or stepwise regression.

Finally, marginal likelihood is computed as kernel score evaluation criterion [134]. Combining
analytical solution for marginal likelihood of a GP and approximate integration over kernel
parameters with Bayesian information criterion [150].
Additional information can be found in overview paper by Steinruecken et. al. [151], studies of
kernels structured and learnt as DNNs [152]–[154] and recent algorithm scalability research by
Hyunjik Kim and Yee Whye Teh [155].

3.4. Deep gaussian processes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sometimes in cases of non-stationary, non-gaussian data or fitting of a function with complex
hierarchical behaviour, simple GPs may underperform. DNNs, however, can learn complex
hierarchies, but by using them we loose benefits of BNP framework. Solution which not only
combines benefits of both modelling frameworks, but also serves as a generalisation over DNNs4
[156]–[162] and single GPs is a D-GP.
Idea of D-GPs was originally introduced by Andreas C. Damianou and Neil D. Lawrence [163]
as a continuation of works on gaussian process latent variable models (GP-LVMs) [164], [165].
Authors prove that through variational approximations any number of GP models can be
sequentially connected to give truly deep hierarchies. The variational approach gives a rigorous
lower bound on the marginal likelihood of the model, allowing it to be used for model selection.
Same lower bound allows to apply D-GP models even when data is scarce and gives an objective
measure from which different structures for deep hierarchy can be selected (e.g. number of
layers).
D-GP architecture corresponds to a graphical model with three node types (figure 3.2 (a)).
Observations – leaf nodes Y ∈ RN×D, latent spaces – Xh ∈ RN×Qh , h = 1, . . . , H − 1 and

4It is worth noting that proof of GPs model generalisation capabilities are proved by both probability theory
and functional analysis.
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Figure 3.2: Different representations of the Deep GP model, figure was taken from [163].

parent latent nodes – Z = XH ∈ RN×QZ . For example if we consider a two-layer D-GP, it’s
generative process can be expressed as (3.5). The intermediate node is involved in two GPs.
where fY ∼ GP

(
0, kY (X,X)

)
and fX ∼ GP

(
0, kX(Z,Z)

)
are playing roles of an input and an

output.

ynd = fYd (xn) + εYnd, d = 1, . . . , D, xn ∈ RQ

xnq = fXq (zn) + εXnq, q = 1, . . . , Q, zn ∈ RQz
(3.5)

To deal with resulting high number of model’s hyper-parameters, latent space is marginalised
[134]. As part of this process authors introduce automatic relevance determination (ARD)
covariance function (3.6). It assumes a different weight wq for each latent dimension and if
weight of corresponding dimension becomes zero, model’s size is reduced and structure updated.

k (xi,xj) = σ2
arde

− 1
2

∑Q
q=1 wq(xi,q−xj,q)2 (3.6)

Next, we will describe main points in bayesian training procedure for D-GP models5, as it is the
most important modelling part.
First, we specify model evidence and prior (3.7) which will be optimised. In general case,
integral is intractable [163], [164]. Next, Jensen’s inequality is applied to find variational lower
bound Fv (3.8), where Q is variational distribution. Decomposition of joint distribution (3.9) in
numerator is still intractable due to non-linearities of p

(
FY | X

)
and p

(
FX | Z

)
terms. But

from [165], we know that probability space of GP prior p(F | X) can be expanded with pseudo-
inputs or inducing points, resulting in augmented probability space (3.10), where UY ∈ RK×D

and UX ∈ RK×Q are additional values and K denotes a number of inducing points. Finally,
5Interested reader will find a more rigorous description in [129], [163].
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combination of Q and (3.10) gives a a tractable variational bound (3.11), where q
(
UY
)
and

q
(
UX
)
are free-form variational distributions and q(X), q(Z) are factorised according to (3.12).

log p(Y) = log

∫
X,Z

p(Y | X)p(X | Z)p(Z), p(Z) = N (Z | 0, I) (3.7)

Fv ≤ log p(Y), Fv =
∫
X,Z,FY ,FX

Q log
p
(
Y,FY ,FX ,X,Z

)
Q

(3.8)

p
(
Y,FY ,FX ,X,Z

)
=

p
(
Y | FY

)
p
(
FY | X

)
p
(
X | FX

)
p
(
FX | Z

)
p(Z)

(3.9)

p
(
Y,FY ,FX ,X,Z,UY ,UX , X̃, Z̃

)
= p

(
Y | FY

)
p
(
FY | UY ,X

)
p
(
UY | X̃

)
·p
(
X | FX

)
p
(
FX | UX ,Z

)
p
(
UX | X̃

)
p(Z)

(3.10)

Q = p
(
FY | UY ,X

)
q
(
UY
)
q(X)p

(
FX | UX ,Z

)
q
(
UX
)
q(Z) (3.11)

q(X) =

Q∏
q=1

N
(
µXq , s

X
q

)
, q(Z) =

Qz∏
q=1

N
(
µZq ,S

Z
q

)
(3.12)

With few additional transforms, variational lower bound can be written in analytical (3.13) and
computationally feasible (3.14,3.15) forms. There, H denotes the entropy with respect to a
distribution, KL – the Kullback-Leibler divergence [166] and 〈·〉 stands for expectations. Terms
gY and rX are associated with D-GP model’s vertical span (nodes per layer) and depth (number
of layers).

Fv =
∫
Q log

p
(
Y | FY

)
p
(
UY
)
p
(
X | FX

)
p
(
UX
)
p(Z)

Q′
, Q′ = q

(
UY
)
q(X)q

(
UX
)
q(Z)

(3.13)

Fv = gY + rX +Hq(X) −KL(q(Z)‖p(Z)) (3.14)

gY = g
(
Y,FY ,UY ,X

)
=

〈
log p

(
Y | FY

)
+ log

p
(
UY
)

q (UY )

〉
p(FY |UY ,X)q(UY )q(X)

rX = r
(
X,FX ,UX ,Z

)
=

〈
log p

(
X | FX

)
+ log

p
(
UX
)

q (UX)

〉
p(FX |UX ,Z)q(UX)q(X)q(Z)

(3.15)

If user wants to modify the model’s hierarchy, variational bound must be updated accordingly.
For example, a deeper model (more layers) will only require additional rX terms. Resulting in a
sum

∑H−1
h=1 rXh

, where rXh
= r

(
Xh,F

Xh ,UXh ,Xh+1

)
,XH = Z. Vertical expansion (equivalent

to increasing a number of neurons in DNN), under independence assumption log p (Xh | Xh+1) =∑Mh

m=1 log p
(
X

(m)
h | Xh+1

)
would transform rXh

term into
∑Mh

m=1 r
(m)
Xh

. Combined expansion can
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be written as (3.16) and it’s visualisation is provided in figure 3.2 (c). Further analytical study
of D-GPs can found on studies of Dunlop et. al. [167].

Fv =
MY∑
m=1

g
(m)
Y +

H−1∑
h=1

Mh∑
m=1

r
(m)
Xh

+
H−1∑
h=1

Hq(Xh) −KL(q(Z)‖p(Z)) (3.16)

As a tool for engineers and researchers, D-GPs (and GPs) found successful applications in
different areas: surrogate modelling of physical systems [168], inverse reinforcement learning
(RL) [169], image classification [170], source localisation [171], time series prediction for hardware
degradation [172], survival analysis with competing risks [173], simultaneous localisation and
mapping (SLAM) [174], astrophysics and astronomy [175], signal processing [176]–[180], system
identification and control [181]–[185] and many others.
These works serve as evidence to a notion of universal modelling property of D-GPs. Supporting
our hypothesis on joint modelling of RF hardware impairments with wireless channel.
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4. Overview of programming frameworks

Given the complexity of the problem, developers may encounter issues during implementation
of proposed GP models. Even though knowledgeable users may already know how to work with
probabilistic programming packages, we believe that it would be beneficial to overview various
software options for practitioners who may not have specific knowledge or are new to the field.
Thus, we select open source projects which are being continuously updated and have an
supporting documentation (with examples). It is worth pointing out that usage of common
open source tools among researchers helps to avoid unnecessary repetition of existing works and
encourages reproducibility of simulation (experimental) results. Despite multiple benefits of
“paper + code” paradigm only a relatively small portion of existing papers adheres to it, judging
by trend in figure 4.2.
Below is a list of frameworks1, which either solely focus on GP models or contain their imple-
mentations as a part of larger probabilistic modelling tool set. Each entry has a link to package’s
homepage and references to a respective introductory papers. Additional description is provided
when package has a specific functionality.

1. General purpose libraries:

• PYRO and NumPyro — [187], [188]
• TensorFlow Probability — [189]
• Turing.jl — [190]
• Edward2 (Edward is no longer being actively developed) — [191]–[193]
• PyMC3 and PyMC4 — [194], [195] — PyMC4 is in active development.
• BayesDB with CGPM — [196]–[198]
• MXFusion — [199]
• CrossCat — [200]
• Gen.jl — [201]
• Stan with PyStan and Stan.jl interfaces — [202], [203]

2. GP specific libraries:

• GPy — [136]
• GPflow — [204], [205]
• GPyTorch — [139]
• GaussianProcesses.jl — [206]
• Stheno.jl and Stheno — [207], [208]
• Neural Tangents — [209] — High-level DNN API for specifying complex, hierarchical,

DNN of both finite and infinite width. Neural Tangents allows researchers to define,
train, and evaluate infinite networks as easily as finite ones. It supports construction
of a neural network model with the usual building blocks like convolutions, pooling,
residual connections, non-linearities and obtain not only the finite model, but also
the kernel function of the respective GP.

1The interested reader may find an older, but still useful overview by Erickson et. al. [186].
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• AugmentedGaussianProcesses.jl — [210] — GP package based on data augmentation,
sparsity and natural gradients. Contains a collection of models for different gaussian
and non-gaussian likelihoods, which are transformed via data augmentation into
conditionally conjugate likelihood allowing for extremely fast inference via block
coordinate updates.

• CandleGP — Port of GPflow features to PyTorch. Structure and syntaxes are kept
close to the former.

• AutoGP — [211] — An inference framework for GP models that explores three
complementary directions: scalable and statistically efficient variational inference,
flexible kernels and objective functions for hyperparameter learning alternative to
the marginal likelihood.

• JuliaGaussianProcesses — a new promising set of Julia libraries. In active develop-
ment.

3. Supporting libraries:

• JAX — [212] — Composable transformations of python and numpy programs. Sup-
ports automatic differentiation, vectorisation, just-in-time (JIT) compilation to
graphics processing unit (GPU) and tensor processing unit (TPU). Usable if one want
to implement GP models “from scratch”. For example: kalman-jax by Wilkinson et.
al. [213], [214].

• GPyOpt — GPy extension for global optimization with different acquisition functions
and physical experiments. Supports large data sets via sparse GP models.

• BoTorch and Ax — [215], [216] — The first provides a modular and easily extensible
interface for composing bayesian optimisation primitives. The second is a platform
for designing and optimizing computational experiments.

• Emukit — [217] — Adaptable toolkit for enriching decision making under uncertainty.
Supports surrogate models when data is obtained from multiple information sources
that have different fidelity and cost, bayesian optimisation, bayesian quadratures,
active learning and analysis of the inputs influence on the outputs of a given system.

• numpy-ml — General purpose “ml” package with minimal amount of python depend-
encies, that includes basic GP modelling tools.

• BayesianOptimization — Bayesian optimisation package with minimal amount of
python dependencies.

• PyProb — [218] — A probabilistic programming system for simulators and high-
performance computing (HPC). The main focus is on coupling existing simulation code
bases with probabilistic inference with minimal intervention. In active development.

• Trieste — A Bayesian optimization toolbox built on TensorFlow, created by Second-
mind Labs (former PROWLER.io).

• ZhuSuan — [219] — probabilistic programming library for Bayesian deep learning.
ZhuSuan provides deep learning style primitives and algorithms for building prob-
abilistic models and applying Bayesian inference. Supported inference algorithms
include customisable methods of: variational inference, importance sampling and
Hamiltonian Monte Carlo.
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We would also like to point out an interesting trend2 in figure 4.1, indicating a continual increase
in popularity of the PyTorch framework [220].

Figure 4.1: Paper implementations grouped by framework, from November 2014 to August
2020, weekly scale.

Figure 4.2: Percentage of papers with code support, from November 2014 to August 2020,
weekly scale.

2Information is taken from – paperswithcode.com. Code repositories for some papers might have been added
later, which explains PyTorch and TensorFlow entries before their respective release dates.
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5. Conclusions and future research

In this report we’ve introduced a problem of combined modelling of wireless channels and
hardware RF impairments. Because of growing amount of beyond 5G scenarios and complexity
of RF hardware, we foresee continual growth of interest in “joint channel” simulators.
Motivated by lack of proper solution and complexity of the problem, we’ve given an overview
of most challenging impairments and existing simulators. To address their disadvantages
and formulated simulator requirements we’ve proposed use of bayesian non-parametric tools.
Specifically deep GPs.
Deep GP regression is novel data-driven modelling technique, continuously researched by “ml”
community. As all generative models they are able to produce new samples for link simulations.
Uncertainty quantification helps with model transparency and interpretation. Lastly, universal
functional approximation property of deep GPs together with automated kernel selection make
it possible to incorporate any new information into the model. Like new types of hardware
impairments or channel scenarios, without changes in general modelling framework.
Our future research includes experimental evaluations of GPs methods on non-stationary wireless
channel scenarios and selected RF hardware impairments. Specifically we want to analyse how
relevant automatic kernel selection can be in the above-mentioned context. Is domain knowledge
is enough to construct deep GP model? Would it require additional automation similar to NAS?
These and other questions will help to design a proof-of-concept “full channel” simulation. In a
long term, we see a possibility of expanding proposed framework into an open-source software
product, like QuaDRiGa or NYUSIM.
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