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1. Introduction

Wireless networks are possible thanks to the computing capabilities of modern hardware.
Complex calculations are performed on every decision taken while serving User Equip-
ments (UEs). From measurements filtering, to handover target evaluation, passing through
signaling and Protocol Data Unit (PDU) construction. Every procedure executed by the net-
work entails a detailed evaluation of hundreds of inputs and a forecast about the effects
of future reconfiguration decisions. These evaluations are computationally expensive and
essential to guarantee the connectivity and Quality of Service (QoS) of the served users.
Traditionally, the optimization of these procedures has been done manually by humans with
years of experience tuning parameters for wireless networks. However, the evolution of mo-
bile telephony and its ever growing complexity has rendered such an approach unscalable.
Despite the progress made by computing and wireless networks in the last two decades, the
panacea promised by Self-Organising Networks (SON) is not as automated as expected.
Most SON features have configuration parameters of their own that also require tuning, and
their gains are hard to evaluate without temporarily impacting network performance. Conse-
quently, the search for more reliable techniques to automate network procedures continues.
The past decade has witnessed a rise in Machine Learning (ML) techniques, which capitalise
on an abundance of data to reach ever growing performance highs. By virtue of their real-
time operating nature, wireless networks have the privilege of generating thousands, if not
millions, of data samples per second. They are therefore an ideal source of data for ML
algorithms.
The lower layers of the protocol stack (i.e., the Physical Layer (PHY) and the Medium Access
Control (MAC) layer) have the most demanding real-time operating points (see fig. 1.1).
This has been exploited in works like [1], which applied ML to the PHY. Higher layers tend to
operate at a slower pace and therefore produce less data per unit of time. Convergence may
hence take longer when training algorithms at Radio Link Control (RLC) or Radio Resource
Control (RRC) layers. Nevertheless, some pioneering work in the application of ML to higher
layers was also carried out early (see [2]).

PHY

MAC

RLC

PDCP

RRC

Data
Production
Rate

Figure 1.1: Lower layers generate more data samples per unit of time.
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1.1. RRM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In modern wireless networks, RRM is the collection of procedures needed to control the
radio connections between terminals and their serving base station. This differs from the
responsibilities of other layers, which address issues such as access to the wireless medium,
encoding, modulation and etc. RRM procedures are usually implemented at Layer 3 and
include features such as:

• Broadcasting of system information

• Connection establishment and termination

• Paging

• Connection configuration and reconfiguration

• Security activation

• Mobility

• Channel measurements

Most wireless technologies standardize the messages and steps required to execute each
of these procedures. Nevertheless, the standards always allow room for flexibility when it
comes to using them. For example, the operators or users may be allowed to choose from
a range of values for configuring a feature’s parameters. This configuration has traditionally
been done manually.
For illustration purposes, consider a basic mobility procedure in 5G networks: the han-
dover. Handovers between two cells begin when a UE sends a Measurement Report about
the radio conditions of a neighbour cell. Measurement Reports are triggered when a radio
measurement from a neighbour cell crosses a pre-configured threshold. The type of the
magnitude (e.g., power or signal quality) and the value of the threshold must be carefully
selected by the network operator in order to maximize the handover success rate. The se-
lection of these thresholds for each of the thousands of cells within a network is hence a
major responsibility of network operators. Poorly configured handover thresholds will lead
to mobility problems affecting millions of connections. It is thus no wonder that autonomous
solutions to select these values quickly and optimally are desired by operators.
Mobility Robustness Optimisation (MRO) is a distributed SON feature designed to address
this challenge. It enables neighbour cells to exchange information about Radio Link Failures
(RLFs) and diagnose specific mobility problems (e.g. handover too early, too late or to
the wrong cell). However, MRO relies on heavy signaling between neighbouring eNodeBs
(eNBs) and/or gNodeBs (gNBs). In a way, it creates a new challenge while trying to solve
another one. For this reason, this project is pursuing the research line described in chapter 3
to address this and other remaining mobility-related challenges.
Medium access is another fundamental procedure in wireless networks. Approaches to
this problem can be classified in two categories: Coordinated and un-coordinated access.
Traditional random access algorithms, such as ALOHA, have worked well for most networks.
However, the advent of Massive Machine Type Communications (mMTC) has uncovered
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scalability constraints. Chapter 2 describes these and lays the ML-based research line to
address them.
Traffic routing is a well-known network process, with IP routing being the best known pro-
tocol. However, traditional routing algorithms are not necessarily applicable in new net-
works with radically novel topologies and behaviors. Such is the case of Flying Ad-Hoc
Networks (FANETs), where novel challenges emerge due to the need for multi-hop connec-
tions. Within this context, chapter 4 describes a novel routing protocol, which is to be used
as a baseline for future ML-based solutions.
The next RRM function covered by this report is the scheduling of radio resources in 802.11ad
networks. Contrary to the random access approach described above, centralized schedul-
ing is one possible algorithm in the coordinated medium access category. In the context of
802.11ad networks, chapter 5 describes the challenge of scheduling contention-free trans-
missions and how to simulate them. The chapter concludes with the definition of the re-
search plan for the rest of the project.
The management of network resources becomes even more relevant in battery-powered
devices. This is specially true in Wireless Sensor Networks (WSNs), where sensors typically
have limited processing power. Furthermore, if the network size is large (i.e. made of a
high number of sensors), managing the data from all these sources also becomes hard.
Chapter 6 discusses these problems in the context of Long Range Wide Area Networks
(LoRaWANs) and it presents the main challenges that ML-based solutions will encounter in
this domain.

1.2. Objectives
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The objective of this Work Package is to investigate whether problems in RRM can be solved
using ML techniques. These include supervised, unsupervised and semi-supervised learn-
ing algorithms based on datasets collected during the lifetime of the project. In addition,
the application of online learning techniques such as Reinforcement Learning (RL) is also
investigated for problems that can be formulated as sequential decision making tasks. Due
to the dynamic and interactive nature of RL challenges, these will be addressed by means
of models and simulators, rather than through static datasets.
RRM problems are commonly addressed in the upper layers of the protocol stack, where
numerous procedures and messages have been standardised. This means that, when com-
pared with the lower layers, data is only available in limited amounts. A main challenge of
ML-based RRM solutions will thus be the ability to converge and provide gains quickly on
limited data.
The RRM challenges addressed in this report are the following:

• Random Access in mMTC

• Mobility Management in 5G

• Routing in drone networks

• Scheduling in IEEE 802.11ad

• LoRaWAN network management
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1.3. Deep Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Deep learning (DL) is a broad category of machine learning (ML) that incorporates Artificial
Neural Networks (ANNs) for learning. Recent advances in DL [3] have enabled remarkable
progress in the fields of computer vision, natural language processing, speech recognition,
and autonomous industry to name a few. Given raw input, DL algorithms use multiple layers
of neurons to extract the higher level features from the input data to learn any task (e.g.,
classification or regression). DL models usually require a huge amount of data samples to
learn from, in order to make effective decisions. This allows the model to generalize to inputs
that it hasn’t observed before.
ANNs are inspired by the information processing systems of a biological brain. A deep
neural network is a network of artificial neurons connected via weighted connection among
layers. A basic deep network consists of an input layer, an output layer and hidden layers
between the input and the output layers. Except for the input and output layers, the number
of hidden layers and the number of neurons in each hidden layer are configurable depending
on the problem. The overall number of layers defines the depth of the network, hence the
term “deep” in deep learning. The dimensionality of each hidden layer (number of neurons in
each layer) determines the width of a neural network. A fully connected deep neural network
with two inputs, two hidden layers (each having three neurons), and one output is shown in
Fig. 1.2a. As mentioned before, each unit in a hidden layer is an artificial neuron, and each
neuron receives inputs from other neurons and outputs its own value using some non-linear
activation. A simple neuron that acts as a binary classifier is known as perceptron.
To generate the desired output, supervised learning (for labeled data) or unsupervised learn-
ing (for unlabeled data) algorithms are used.

Input	Layer

Hidden	Layers

Output	Layer

(a) A neural network

x1

x2

y

w
1

w 2

(b) A neuron

Figure 1.2: An example of a fee forward ANN with an input layer, 2 hidden layers and an
output layer along with the functionality neuron with two inputs and an output, and activation
function

1.3.1. How does a neuron work?

An artificial neuron is a function f of the input x = (x1, x2, ... , xd ) weighted by edges’ weights
w = (w1, w2, ... , wd ), along with bias b and an associated activation function σ. The first
computation at the neuron is as follows:
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z =
∑

i

wixi + b, (1.1)

or for neuron Fig. 1.2b, z = w1x1 + w2x2 + b, where b is a bias parameter. The above
calculation is then passed through an activation function σ to produce the output y = σ(z).
When stacked in multiple layers, neural networks are capable of approximating any continu-
ous function on a compact domain. This universal approximation property lies at the core of
their success in the context of deep learning.

1.3.2. Activation and Loss Function

There are several activation functions typically used in the literature; however, the application
of a particular activation function only depends on the properties of the problem. For exam-
ple, a step function could be used if only binary output is desired. A few popular activation
functions are the following:

• Linear or Identity function 1

σ(x) = x (1.2)

• The sigmoid function

σ(x) =
1

1 + exp (−x)
(1.3)

• The Rectified Linear Unit (ReLU) activation function

σ(x) = max(0, x) (1.4)

A DL algorithm takes input data x and uses this input to estimate the output y that is used
for the prediction. Usually, a large amount of data samples (xi , yi) are required for a neural
network to make predictions for an unseen input. For the learning and training process,
weight parameters w and the bias parameters b are tuned iteratively to minimize the differ-
ence between the predicted values and the true values for a particular training examples in
the data. The difference between the predicted and expected values shows how good the
prediction was, and it is determined by a loss function. As an example, mean squared error
(MSE) loss function is calculated as

LMSE =
1
N

N∑
i=1

(yi − ŷi)2, (1.5)

where ŷ is the prediction and y is the expected output, and N is the number of training exam-
ples in the data. One of the widely used techniques to tune the parameters and minimize the
loss is the backpropagation (BP) algorithm that usually employs gradient descent or variants
such as stochastic gradient descent (SGD) to reduce the loss by updating weights. Since
then, many variants of gradient descent have been proposed as optimizers. RMSProp and
Adam optimizers are among the ones that are widely used.

1Modern neural networks use non-linear activation functions. Linear activation functions are usually used
at the output layer only.

Dissemination Level: Public. Page 13



H2020 Grant Agreement Number: 813999
Document ID: WP5/D5.1

1.3.3. Recent Advances in Deep Learning

The ANN shown in Fig. 1.2a is a fully connected feed forward network. However, these
DL networks do not scale well for image classification tasks. Convolutional neural networks
(CNNs) [4] revolutionized the image processing and computer vision fields. CNNs allow the
extraction of features from images that are usually required relatively little pre-processing
of images The convolution operation is used at the layers to extract the features and then
pooling layer is used to reduce the dimensionality of the data.
Furthermore, to deal with sequential data such as time series, recurrent neural networks
(RNNs) became popular in speech recognition and translations. The popularity of RNNs
is due to a special type of neural network known as long short-term memory (LSTM) [5].
LSTMs contain memory to maintain dependencies of hidden layer entries on the previous
entries in time.
One of the distinctive deep learning techniques are generative adversarial networks (GANs)
[6]. These networks are designed to generate plausible new data samples, that are con-
sistent with the training data. A GAN consists of a generative network and a discriminative
(adversarial) network, both of which are trained iteratively against each other: the former
generates new samples, while the latter learns to distinguish between true samples (from
the original training set) and generated samples.
Other advances in deep learning techniques include autoencoders and deep belief networks
(DBNs) [7]. The autoencoder based models are used to learn the useful representations
within data in order to develop a compressed representation of the input.

1.4. Reinforcement Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In reinforcement learning (RL), an agent interacts with an environment, takes actions and
receives feedback from the environment in form of reward (or penalty). The agent learns by
the trial and error method. At every time step, the agent observes the state of the environ-
ment, chooses an action from a set of possible actions and receives the reward for choosing
that action. An RL environment is usually modelled as a Markov decision process (MDP),
with the environment being quantized in states and an agent ought to take actions in order to
maximize the total reward in the long-term. One of the challenges that arise in RL is to strike
the right balance between exploration and exploitation: the agent has to exploit rewarding
actions, but it also has to invest (time) resources to explore better strategies.

1.4.1. Markov Decision Process (MDP)

An MDP is a discrete-time stochastic control process. As described in [8], an agent interacts
with the environment in a sequence of discrete time steps t = 0, 1, 2, ... , T . MDPs follow the
Markov property, which means that the environment’s response in state St+1 at time t + 1
only depends on the present state St , and not on the past states. A typical MDP is a tuple(
S,A,P, γ,R, Q

)
where

• S is a finite set of possible states

• A is a finite set of possible actions
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Environment

Agent

St

Rt

St+1

Rt+1
At

Figure 1.3: A general agent-environment interaction and reward process in the RL

• P is the transition probability matrix where Pss′ = P[St+1 = s′
∣∣ St = s, At = a]

• γ ∈
[
0, 1
]

is a discount factor, and

• R : S ×A −→ R is a reward function

• Q(St , At ), a value function which is updated in each iteration, whenever an agent se-
lects an action, and observes reward and move to a new state after time t.

The transition model returns the probability of going from state St to the next state St+1 when
action At is chosen. The reward is calculated when the environment makes a transition from
state St to St+1. Agent-environment interaction is depicted in Fig. 1.3. The core problem of
MDPs is to find a policy πt that maps observations to a probability distribution over the action
space, from which the next action is drawn.
At each time step t , the reward is a real value received by an agent in state s and it is
immediate reward. Let’s say that agent receives sequence of rewards after time step t
denoted as Rt+1, Rt+2, ... , the return will be the discounted sum of the rewards:

Ut = Rt+1 + γRt+2 + γ2Rt+3 ... + γ2Rt+3 =
∞∑

k=0

γkRt+k+1, (1.6)

where parameter γ is a discount rate or discount factor, with range 0 ≤ γ ≤ 1. The pa-
rameter γ makes an agent shortsighted or farsighted. If γ = 0, only the immediate reward
is considered, ignoring the total reward that could be obtained in the long term. We are
usually concerned with the expected reward for each state-action pair. The goal of an agent
in RL-based problems is to learn a policy that maximizes the long term reward. How good
is the expected return in a given state or how good is it for a given action in a given state,
is estimated by value functions. There are two type of value functions: state-value function
and action-value function that are used to derive the bellman equation that expresses the
recursive relationship between the value of the state and the value of its successor states as
in [9]. The bellman equations for state-value function and action-value function when policy
π is being followed, can respectively be written as

vπ(s) =
∑

a

π(a|s)
(

r + γ
∑

s′
Pss′vπ(s′)

)
, (1.7)
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and

qπ(s, a) = r (s, a) + γ
∑

s′
Pss′

∑
a′
π(a′|s′)qπ(s′, a′) (1.8)

The optimal value functions v∗ and q∗ allow us to choose optimal actions without having a
prior knowledge of the environment. This is why RL is suitable in dynamic environments that
are subject to change randomly. And this is the reason we have chosen RL to formulate our
problem of random access in wireless networks because future wireless environments will
need dynamic resource allocation.

1.4.2. Q-Learning

Perhaps one of the most important RL algorithms is Q-Learning (QL) developed by Watkins
[10]. It follows an off-policy learning method, which means estimating the Q-function and
updating the policy separately. An agent explores to generate the behavior using behavior
policy, while it learns a deterministic policy known as target policy that is independent of the
policy followed for the action selection.
In QL, the action-value function is updated as follows:

Q(St , At )←− Q(St , At ) + α
[
Rt+1 + γmax

a
Q(St+1, a)− A(St , At )

]
. (1.9)

One of the reasons to use off-policy methods such as QL is to deal better with exploration
and exploitation trade-off. This trade-off is one of the challenges in RL. An agent has to
explore the environment for better actions than already learned ones, and it also has to
exploit what it already has learned in terms of rewards. One simple but important policy is
the ε-greedy policy, which in state St assigns the action

At ←

{
a random action with probability ε
arg maxa Q(St , a) with probability 1− ε.

(1.10)

The exploration–exploitation trade-off can be tuned via the parameter ε [9]. At early learning
stages, it is advisable to use higher values of ε in favor of exploration, and then gradually
decrease the ε to approach 0.

1.5. Deep Reinforcement Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Deep reinforcement learning (DRL) combines the capabilities of deep neural network and
RL [11]. This combination has allowed to tackle challenging tasks for which no tractable
algorithm was previously known. One landmark in the progress of DRL is when Google’s
AlphaGo program defeated a human champion in Go [12].
Since classical RL algorithms such as QL rely on a tabular representation of actions and
states, they are only tractable for small action–state spaces. To cope with large state spaces,
DRL leverages the universal approximation property of neural networks to approximate the
value functions in RL (or Q-values in the case of QL). In DRL, an agent learns the optimal
policy. If a state is given to a deep neural network, it can approximate the best action for that
particular state. This is shown in Fig. 1.4.
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A DRL algorithm that uses QL and neural networks is known as deep Q-network (DQN).
DQN has become a popular tool to solve a wide range of RL problems and has matched
or exceeded human-level performance [12] on some RL problems, such as playing Atari
games. The DQN proposed in [12] used convolutional layered neural network (although any
kind of layers such as LSTM or dense can be used). The past experiences of the agent are
stored in a memory and are randomly sampled to replay these experiences. This technique
is known as experience replay.

Environment

Rt

St+1

Rt+1

At

St

Agent

Figure 1.4: Deep Reinforcement Learning Environment

Moreover, a separate target network is used to minimize the loss between actual Q-values
and the target Q-values. The target network calculates the target values as follow

Y (s, a, r , s′) = r + γmax
a′

Q(s′, a′; θ−), (1.11)

and hence, the loss function is calculated as

L(θ) =
(

Y (s, a, r , s′)−Q(s, a; θ)
)2

, (1.12)

where the value Q(s, a; θ) are the Q-values of actual network and Q(s′, a′; θ−) represent the
Q-values of the target network. The parameters θ and θ− are updated by stochastic gradient
descent by minimizing L(θ).
Further improvements on DQN have been made to provide training stability with Double
DQN [13], in which action selection and action-value estimation are decoupled and calcu-
lated separately by two different DQNs. Furthermore, dueling DQN [14] uses two separate
estimators: one for the state value function (scalar) and the other for state-independent ad-
vantage function for each action. The advantage function measures how much better an
action is compared to other actions in a given state. Both of them are then combined for the
final Q-values.
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2. Machine Learning for Massive Random Access in mMTC

Recent advances in ML have encouraged the wireless research community to explore how
to incorporate ML algorithms in wireless networks. The upcoming fifth generation (5G) net-
work will support dense deployment of the Internet of Things (IoT), and verticals such as
autonomous cars, e-health, and virtual reality (VR) applications. In order to meet complex,
dynamic and diverse requirements, artificial intelligence (AI) and ML tools have already been
regarded as a paradigm shift towards future wireless generations. For dynamic resource al-
location in wireless systems, ML algorithms such as DL and RL have shown a great potential
in recent years. However, there is still a long way for the ML tools to go in wireless commu-
nications to overcome several design and performance challenges [15].
Multiple access in a wireless communication system refers to the process by which multiple
users coordinate their access to the medium. The fundamental problems are: how the phys-
ical resources should be divided; and which user should access which resource, and when.
In legacy communications networks, users go through the process of establishing the con-
nection with access points (AP) or base station (BS) in order to access the medium. Multiple
access can be categorized into coordinated multiple access and uncoordinated multiple ac-
cess. In coordinated multiple access, the central unit (BS or AP) assigns certain resources
prior to transmission. This is known as grant-based multiple access. Typical coordinated
multiple access schemes are time division multiple access (TDMA), frequency division mul-
tiple access (FDMA), code division multiple access (CDMA), orthogonal frequency division
multiple access (OFDMA) and non-orthogonal multiple access (NOMA). These techniques
have been incorporated in wireless cellular network generations. For instance, in first gen-
eration (1G) analog systems, FDMA was a popular access technique. In 2G and 3G, TDMA
and CDMA were incorporated, respectively. In 4G, OFDMA is being used as a multiple
access technique. For 5G, NOMA, along with OFDMA, is under consideration. In unco-
ordinated multiple access, users access the medium randomly without coordination by the
central unit. The transmission is opportunistic. Users access the medium in a grant-free
manner, in that devices transmit without prior permission from the central unit. Classical
ALOHA [16] and its variants fall into this category.

2.1. Random Access Protocols
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we will briefly discuss classic RA protocols such as ALOHA [16] and its slotted
version called Slotted ALOHA [17], and recent advances on RA protocols aiming to increase
the throughput of grant-free access employing advanced signal processing techniques.

2.1.1. ALOHA

The first ALOHA protocol was introduced in 1970 as the implementation of random multiple
access in a wireless medium. The simultaneous transmissions from users in the ALOHA
protocol may result in collisions (either complete or partial), in which case the collided pack-
ets cannot be successfully decoded. The packet transmission is only successful if there are
no concurrent transmissions. We illustrate the ALOHA transmission protocol in Fig. 2.1a.
Usually, the packet arrivals are modelled by a Poisson distribution. Let λ be the average
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number of packet arrivals within a time interval equal to the packet duration. The throughput
of ALOHA in terms of channel utilization, namely the average number of packets recovered
by the receiver over a reference time interval as in [17], can be written as

G = λe−2λ (2.1)

The maximum throughput of ALOHA is η = 1/2e = 0.184, which is approximately 18.4% of
successful packets. One shortcoming of ALOHA is that packets are discarded even when
there is only a slight overlap between packets.

User 1

User 2

User 3

time

(a) Pure ALOHA

User 1

User 2

User 3

time

(b) Slotted ALOHA

Figure 2.1: Classic Random Access Protocols

In Slotted ALOHA, packets are forced to fall within a certain time interval at the receiver. The
transmissions are time synchronized, but still uncoordinated. The transmissions are divided
into discrete time slots and each user can start its transmission only at the beginning of a
time slot. Slotted ALOHA transmissions are depicted in Fig. 2.1b. Collisions are reduced in
this way and the overall throughput is increased. The throughput of slotted ALOHA case as
in [17] then becomes,

L = λe−λ (2.2)

packets per time time slot. The maximum throughput in the slotted case, as can be seen,
is η = 1/e, which means that only 36.8% transmissions are successful. In this way, forcing
and synchronizing the users to transmit in time slots, we double the channel utilization in the
slotted ALOHA as opposed to the pure ALOHA.
Several other variations of ALOHA such Carrier Sense Multiple Access (CSMA), have been
widely adopted multiple access techniques for digital communication. In CSMA, empty chan-
nels are sensed before transmitting the packet. The CSMA collision detection (CSMA/CD)
scheme became very popular in Ethernet switches, while CSMA collision avoidance (CS-
MA/CA) is a popular multiple access technique in IEEE 802.11 networks. However, these
techniques required some level of signaling for detection and sensing.

2.1.2. Modern Random Access Protocols

Recent advances in signal processing and receiver design techniques led the quest for re-
searchers to develop sophisticated RA algorithms for higher throughput and reliability which
can compete with their coordinated counterparts. This paved the way for the birth of mod-
ern RA techniques and their applications in IoT as well as 5G and beyond. The key idea
of modern RA is to embrace the interference constructively at the receiver and use SIC to
recover the transmitted packets. This idea was first applied and presented in contention res-
olution diversity slotted ALOHA (CRDSA) [18] and it was proposed in the context of satellite
communications. The idea is to send multiple copies of the same packet in different time
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Figure 2.2: Irregular repetition coded slotted ALOHA

slots for diversity. The receiver uses SIC to recover replicas of collided packets from already
successfully recovered packets. The recovery of packets happens in an iterative fashion in
such way that already recovered packets in the previous time slot propel the new iteration
until all the packets are recovered. This phenomenon is shown in Fig.2.2. The real poten-
tial of this idea has only been unleashed when PHY layer coding techniques are applied
to the transmitted packets in [19] and [20], and the technique is dubbed as coded slotted
ALOHA (CSA). The idea presented in these works is to allow active terminals to protect
their packets with coding against erasures, in multiple predetermined time slots like in slot-
ted ALOHA. The receiver employs multipacket reception techniques such as SIC to recover
packets as discussed above. This technique is extended to use irregular repetition slotted
ALOHA (IRSA) [20], [21], where coded packets employ repetition codes. In IRSA, repetition
rate of each packet is variable and carefully designed. CSA [19] is a more general frame-
work that allows to use any forward error correction coded for encoding of packets. The
inner code is used to encode the information for the error correction, while the outer code is
used to encode the packet for user detection. These techniques have shown a remarkable
improvement over classical RA (pure ALOHA and variants), more than double their through-
put [22]. In this manuscript, we refer to these coded random access based protocols as
modern RA protocols.

2.2. Multiple Access Challenges in mMTC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Massive machine-type communication (mMTC) paradigm is one of the key enablers of 5G
and beyond communication technologies [23]. We have experienced IoT, but mMTC con-
tains internet of everything (IoE), which basically is network on humans, machines, vehicles
and their inter connections. Different verticals will be served and supported in 5G such as
e-health, smart industry, precision agriculture, and connected cars etc., as shown in Fig. 2.3.
If on one hand, mMTC brings business opportunities, while on the other hand it poses chal-
lenges for engineers and researchers. In mMTC, the number of active devices is expected to
increase several orders of magnitude (1 million devices per km2 [24]), scheduled transmis-
sions will suffer a significant signalling overhead, thereby affecting the overall performance
of the network. RA techniques suite better for such technologies where transmissions are
not coordinated or scheduled. However, RA protocols for mMTC are required to be more
efficient and scalable to support massive access and the classical and modern RA protocols
are not sufficient to support massive connectivity.
A mMTC system is a network of devices like the IoT network but on a massive scale. The de-
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Figure 2.3: A general setting of massive machine-type communication

vices will have different requirements as we mentioned, in terms of quality of service (QoS),
latency and energy or spectral efficiency. Moreover, the devices will have large spatial den-
sities and sporadic transmissions with short packet lengths. The peculiarities of mMTC
settings makes it different and challenging compared to the traditional cellular networks be-
cause of the following reasons:

• When the devices are sporadic and the transmissions of massive number of devices
are unpredictable, it makes it difficult to design efficient resource allocation algorithms.
Pre-allocation of resources like in conventional cellular communication for human-type
communication becomes inefficient in this scenario [25]

• The conventional contention-based access techniques are infeasible when massive
numbers of devices will access the medium. It will create a huge signaling overhead
and messaging overhead for resource allocation. This signaling overhead will highly
affect the battery power of devices. Therefore, is unreasonable to assume that receiver
knows perfect channel state information (CSI) and assigning pilots to each device for
channel estimation is a difficult task [26].

• The above reasons suggest the use of uncoordinated RA procedure for massive ac-
cess. However, modern RA protocols’ performance is still a question for massive num-
ber of devices. mMTC devices are low complexity and low power devices that needs to
preserve their energy. Coded RA could pose challenges because of the fact that it will
need large number of packet retransmissions when massive IoT devices will access
the medium at peak traffic hours, thereby reducing the energy efficiency both at the
transmitter and the receiver. [27].

It is evident from the reasons above that there is need to design and develop dynamic ran-
dom access techniques in order to handle massive access. It is called as massive random
access in the literature [27], [26]. Moreover, for heterogeneous IoT traffic generated by
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mMTC devices, specific traffic characteristics and contextual information needs to be taken
into account for designing massive random access protocols.
As we have discussed above, ML techniques especially RL and DL have already shown their
potential in wireless networks. These techniques make sense in complex networks such as
mMTC, which is dynamic due to its nature and where the requirements are diverse and vary-
ing. Although state-of-the-art ML-based approaches, that we will present in the next section,
have potential in dynamic channel access decisions based on their local observations and
without centralized controller, their performance for massive number of devices is yet to be
explore. One fundamental question that arises is that if these techniques are scalable to
massive network. If not, what are the fundamental drawbacks in terms of algorithm design
and complexity that needs to be explored for the scalability as well as their performance in
mMTC. Therefore, in this project, our goal is to design ML-based RA techniques that could
scale well for mMTC systems, without compromising the performance of the network.

2.3. Machine Learning for Random Access
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With the advent of powerful processing and huge storage capabilities of hardware, machine
learning (ML) tools have become popular to solve challenging tasks and optimal decision
making in dynamic environment. Since the number of configuration parameters will be large,
especially in mMTC networks, conventional methods and well-known mathematical tools in
wireless communications may not scale well to provide us efficient solutions. The dynamics
of future networks as for automated processes where human intervention is least possible
or where it is not practical.
One promising direction to achieve this goal is through ML tools. ML has been known for a
while to make intelligent decisions in complex environments. ML algorithms are used to learn
about the environment to make optimal decisions using already collected observations (data)
such as DL, or by observing and interacting with the environment like trial and error such
as RL. Future networks, e.g., 6G and beyond are expected to integrate ML tools throughout
the network, and ML tools are particularly useful for dynamic channel allocation in networks
where the number of users is large and the physical resources are limited [28], [29]. In the
next section, we will provide an overview of existing RA techniques that use ML for spectrum
access. We will start the state-of-the-art with mentioning few modern RA protocols that have
been recently proposed for massive connectivity, followed then by ML-based techniques in
the literature.

2.3.1. State-of-the-art

Modern RA schemes [18]– [20] started a new direction of research for uncoordinated mul-
tiple access issues in future wireless networks. Interestingly, besides more than double
throughput than slotted ALOHA, modern RA protocols can serve a larger number of users
than ALOHA-based techniques and therefore, they have attracted much attention for IoT
scenarios in future wireless generations [30]. As reported in [27], modern RA techniques,
such as coded RA, could pose challenges in terms of complexity when the number of users
grows large. For this purpose, there has been a number of works on efficient code design for
coded RA, e.g., in [31], a scheme is proposed for asynchronous RA where authors showed
the performance of their code design for RA with and without the abstraction of PHY layer.
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In [32], authors proposed a low-complexity code design for K -fold slotted ALOHA scheme
for multiuser detection in mMTC. Like coded slotted ALOHA, an outer code is designed for
user detection in such a way that if K or less number of users transmit in a certain slot at
the same time, the receiver can decode the corresponding packets successfully from their
linear combination, whereas no packet can be decoded when more than K users transmit.
It employs the concept of compute-and-forward based grant-free access. These techniques
have their advantages in terms of throughput; however, they still incur computational com-
plexity when the number of users is massive. Furthermore, how to design optimal solutions
for channel assignment in such complex systems is still unclear. This motivates us to explore
and leverage ML algorithms for channel access problem.

RL has become a popular choice for resource management in wireless networks. Its ability
to learn through interaction with dynamic environments and to adapt accordingly has made
it an effective tool to address medium access problems (both with and without coordination).
Since for ALOHA-like random access, users are not scheduled and there is no communica-
tion between users, the state of the environment is not fully observable, as each user only
knows its own state. Such problems are usually modelled as partially observable Markov
decision process (POMDPs), in contrast to classic MDPs, where the environment is fully ob-
servable. In wireless networks, nodes such as BSs or APs are represented by agents that
learn to schedule resources, while user devices may be represented by agents that compete
for the channel access. Several channel access frameworks have been proposed in the lit-
erature in which agents are able to learn and make decisions without requiring any prior
knowledge, in an independent fashion, using local observations (e.g., ACK signals). First
applications of RL to multiple access in wireless communication date back to 2010, when
authors in [33] proposed a multi-agent Q-learning based ALOHA-like technique for cognitive
radios (CR), whereas RL-based single-user and multiuser cases are compared in [34] and
the effects of different RL hyperparameters on learning are analyzed. Although QL works
well for small state and action spaces as in [33], it becomes problematic in terms of complex-
ity and convergence as the state space grows. In order to overcome this problem, DQN [35]
has become a very popular technique that combines QL with neural networks for Q-value
approximation and to find the optimal policy. Using DQN for spectrum access in [36], a dy-
namic multiple channel access technique is proposed in which the user (agent) observes
good or bad states of the channel. The channel is considered good if the transmission is
successful and a reward +1 is obtained, while the reward−1 is obtained if the transmission is
failure and the channel is considered bad. The past actions and channel-state observations
are used to train the DQN in order to find a policy that selects the best channel. However,
this work only considers the single-user case, which is not practical in the context of wireless
networks. For the multiuser case, on the other hand, the problem becomes fundamentally
different.

A deep actor-critic(A2C) algorithm is proposed for multi channel access in [37], in which
both single-user and multiuser cases are presented. The A2C algorithm uses two deep
networks: an Actor and a Critic network. The Actor determines the action when the state
is given, while Critic evaluates the value of the state. In [38], a multiagent deep learning
approach has been considered for resource allocation in LTE networks. Agents are LTE BSs
that aim at predicting the future states of the system to proactively assign resources. In this
work, authors have used LSTM with the REINFORCE algorithm [39] to predict the future
states. The REINFORCE algorithm is a policy gradient method, unlike QL, it evaluates the
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policy instead of Q-values. For the multiagent case where each user device is acting as an
agent, a distributed random spectrum access technique has been presented in [40]. Offline
centralized training is performed for each agent to learn independently through their local
observations. In this paper, authors have presented two scenarios: a) competitive approach
in which each user aims at maximizing its own network utility, e.g., achievable rate and b)
cooperative approach in which each user maximizes one and the same system wide global
network utility. Dueling DQN with LSTM is used to model to track the history of previous
states. In dueling DQN, before evaluating the Q-values, the network is divided into two layer
streams: an advantage steam that evaluates how good the selected action is; and a state-
value stream that evaluates state-value function. Both steams are combined at the end for
the resulting Q-values. Furthermore, a recent work [41], studies joint channel access and
channel aggregation in the CRs taking channel correlation into account. Each user only
observes a segment of frequency band in the multiple channels, and the vacant channels
are aggregated for transmission in that segment.
In [42], authors proposed a Q-learning-based decentralized algorithm under the POMDP
framework to optimize the degree distribution (number of packet replicas) of IRSA in IoT
systems. In [43], LSTM-based NOMA technique has been proposed for random access.
The data in this work is generated through simulations for training the network. Further-
more, another recent work [44], employs Q-learning for channel allocation in NOMA-based
RA for MTC network with the consideration path loss and fading effects. Multi-agent deep
deterministic policy gradient (MADDPD) method is used in [45] to exploit spatial and tempo-
ral correlation of devices and events in IoT network for random access. However, this work
does not consider the affect of these correlations on network utilization. Moreover, they have
evaluated the performance for very few number of users; therefore, it would be interesting to
see if MADDPG performs well for large number of users. In [46], a DQN-based joint power
control and channel access scheme has been proposed, while DRL and graph convolutional
networks are used in [47] for channel allocation in IEEE 802.11 wireless local networks.
An interesting area where ML solutions have been employed to handle massive access man-
agement is to consider heterogeneous network requirements of devices such as latency and
QoS. Coexistence of TDMA and ALOHA has been considered and optimized using DRL for
proportional fairness in [48]. In [49], DRL is used for ultra reliable and low latency commu-
nication (URLLC) traffic where BS were used as agents to allocate physical resources to
users. In this work, authors used transfer learning and cooperative learning techniques to
enhance overall network’s performance.
Moreover, predictive resource allocation by using a technique called as fast uplink grant is
emerging as a promising solution for resource management in mMTC. Uplink resources can
proactively be allocated to users by BS. This has been realized by using ML techniques
for prediction [50] and assigning resources prior to transmission without RA channels being
scheduled.
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3. Mobility Management in 5G

3.1. Background
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The telecommunication and networking systems have evolved tremendously over the last
ten years to satisfy the increasing demand for low latency and high reliability. The most
prominent design in the next-generation telecommunication networks is the Heterogeneous
Network (HetNet) architecture [51]. HetNet is a multi-tier cellular wireless network that pro-
vides ubiquitous coverage to indoor and outdoor user equipments (UEs). In HetNets, a
massive number of small-cells are deployed underlying some macrocells that meet the re-
quirements of next-generation of cellular service categories, such as the Ultra-reliable Low-
latency Communications (URLLC), Internet of Things (IoT), and extreme Mobile BroadBand
(eMBB). On the other hand, Machine Learning (ML) is a significant technology that can be
used to improve user mobility prediction and handover (HO) decisions, fostering seamless
services’ execution in HetNets.

3.2. Mobility Management
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One of the main goals of mobile cellular systems is to provide UE a seamless wireless
connection from one base station (a serving cell) to another base station (a target cell).
More specifically, the UEs can always attach to the telecommunication network, and when
attached, maintain the connection, such that the data transfer will not be delayed or lost.
The purpose of mobility management for the connected mode UEs is to maintain the wireless
connections between UEs and telecommunication networks. Mobility management consists
of two procedures which are cell selection and HO procedures. But only the HO procedure
governs the active data traffics. Moreover, the HO implementation can be separated into two
different categories. The first category is the soft HO (SHO). SHO or connect-before-break
HO executes the HO procedure where the incoming radio links are added to an UE while the
existing radio links are still connected to the UE. On the other hand, the second category is
the hard HO (HHO). HHO or break-before-connect HO executes the HO procedure where
the incoming radio links are added to an UE after the existing radio links are disconnected
from the UE. Both SHO and HHO can be triggered by UEs or base stations.
From Fig. 1, in general, UEs will measure the signal strength or signal quality over the
radio channels from all the available base stations in around of the UEs. If a predefined
condition is fulfilled in the measurements result, the UEs send a measurement report (MR)
to the serving base station (S-BS). Once the MR is correctly received at the S-BS, the
HO evaluation starts between the target base station (T-BS) and the S-BS. During the HO
evaluation, a HO request is sent to the T-BS. Upon successful admission, a HO command
is transmitted from the S-BS to the UE. Once the HO command is successfully received,
the UE executes the HO procedures. At that time, the UE connects to the target cell. If
performing HHO, the UE will disconnect it from the serving cell as well. But SHO will still
keep the connection between the UE and the serving cell. A HO confirmation message is
transmitted by the UE once it can receive broadcast information from the T-BS. Before the
HO completion, the user data gateway (UDG) switeches the DL data path from S-BS to
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the T-BS. And therefore the T-BS starts receiving packets from the UDG. Finally, the T-BS
transmits a HO complete message to the S-BS to inform the success of the HO. After that,
the S-BS releases any allocated radio resources to that UE.
There are many HO algorithms defined by 3GPP [52]. The HO algorithms are designed and
optimized based on the performance index such as: minimizing the total number of HOs,
reducing the ping-pong effect, and minimizing the HO decision time. Since the network
architecture becomes more complex than before and more performance index are claimed,
optimizing the HO procedure to achieve the performance goal is considered as an important
issue in the telecommunication network.
Many state-of-the-art approaches improve the HO procedure with different HO algorithms,
which can be categorized into four groups based on their mechanisms and parameters.
The first category comprises the mobility pattern-based algorithms, e.g., [53], which use a
historical information table for the network and the UEs to predict target cells. In the next
category are the algorithms optimized by the movement direction and location. The location
parameters that depend on Global Position System (GPS) were used in [54] to determine the
positions of neighbor eNBs and UE for predicting the new UE position, such that UEs select
the target cell based on its direction. In the third are self-optimizing algorithms, e.g., [55] [56],
which decide on the HO through tuning the HO parameter values or adding new parameters
to improve HO performance. The last category consists of multi-hop cellular algorithms,
e.g., [57] [58], which use an advanced HO decision controlled in a relay node or in a base
station.

3.3. Problem Statement
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Besides the enormous advantages of HetNets, the frequent Handover (HO) due to the de-
ployment of the ultra-dense network is one of the most critical challenges in the development
of HetNets. That will lead to increasing the ping-pong effect and Radio Link Failure (RLF).
As a result, the system performance of a HetNet degrades severely. In order to improve the
performance of the HetNet system, a state-of-the-art decision-making ML-based algorithm
is required to establish the HO accurately and efficiently. Moreover, the inclusion of ML can
be a driving source to minimize the increasing effects of frequent HOs in the ultra-dense
HetNet system of future generation wireless networks.

3.4. Research Method
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The study will be implemented by a discrete-time simulator e.g. NS-3. From the simulator,
the theoretical simulation will be conducted via three major components. The first is Het-
Nets environment which implements a macro-cell and micro-cell co-existing network with
the Rayleigh channel model [59]. The next is the mobility model. The UEs moving behav-
iors e.g. Random Waypoint model, will be implemented in the simulation. The third is a ML
framework. We aim to use the Reinforcement Learning (RL) framework [60] in the proposed
algorithm for our simulation. Then simulation results will be analyzed and compared with
the state-of-the-art HO approach. In addition, we will also seek the other ML frameworks for
performance comparison.
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3.5. Expected Research Result
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An efficient handover (HO) algorithm based on ML will be developed. The HO algorithm will
also generate the HO parameters for HO decision. The developed algorithm will be investi-
gated and validated by using a simulator tool. The proposed algorithms will be investigated
and compared to other state of the art algorithms in HetNet with the consideration of dual
connectivity.

Dissemination Level: Public. Page 27



H2020 Grant Agreement Number: 813999
Document ID: WP5/D5.1

4. Routing in Drone Networks

4.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drones or Unmanned Aerial Vehicles (UAVs) are used in a wide range of applications, from
tracking and monitoring animals in remote areas [61] to military applications [62]. In general,
drones are used to search, identify and monitor interesting events over massive and/or in-
accessible areas. In order to effectively accomplish the task, multiple UAVs are deployed in
a certain area and are expected to coordinate actions in an autonomous fashion or execute
direct instructions from a control center.
In many scenarios, the UAVs need to exchange a relatively large amount of data among
themselves and/or with the control station to support a given service. For example, dis-
tributed area monitoring/patrolling applications may require the UAVs to stream high defini-
tion video or thermal camera recordings to the control station, which demands wideband
communication technologies (e.g., mmWave) that typically have limited coverage range.
Therefore, providing such services over wide areas may require multi-hop data connections,
where the UAVs themselves can act as relays for other nodes in the network.
On the other hand, UAVs and the control station also need to exchange light control traffic,
which usually has strict latency and reliability constraints, but low transmission speed re-
quirements. This traffic can be carried by low-rate long-range communication technologies,
such as LoRa, so as to realize direct links between the UAVs and the control center. For
example, this control channel can be used by the UAVs to send periodic tracking updates
to the control center, which can use these messages to track the UAVs position [63–65]. In
these scenarios, UAVs and the control center can use different technologies to carry infor-
mation and signaling traffic, physically separating the data and control planes. However, the
randomness in the drones’ movements makes the design of a multihop routing protocol for
the data plane a challenging problem.
In this introductory work, we designed a Stochastic Multipath UAV Routing for FANETs
(SMURF) protocol. It is a centralized multipath routing protocol for FANETs, which exploits
the tracking information available at the control center to estimate the reliability of routes and
select the set of routes that guarantee the overall highest reliability. The routing tables can
be computed by the control center and propagated to UAVs by using the Software Defined
Network (SDN) [66] paradigm.

4.2. SMURF Routing Protocol
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A FANET is modelled as a time-varying graph G(t) = (V , E(t)), where V is the set of UAVs
in the network and E(t) is the set of existing links at time t . Each drone i is characterized by
its position xi(t) = (xi(t), yi(t), zi(t)) in the 3D space. We define the distance dij(t) = ||xi(t) −
xj(t)||2 as the Euclidean distance between the two drones. In the following, we consider a link
eij(t) as part of E(t) if the distance between drones i and j is lower than the communication
range R (which depends on the communication technology used): E(t) = {eij(t) : dij(t) ≤ R}.
This simple assumption is justified by the fact that the drones will be in line of sight of each
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other in most practical applications; however, the model can be extended to more complex
scenarios.
In the following, we omit the time notation for readability; the operations described below
need to be repeated at each time step, as the nodes in the network move and updated
position information becomes available: as such, each routing decision is static, but routes
are re-evaluated over time. We assume that the real position xi of each UAV is not known
by the control station, which keeps an estimate of its Probability Density Function (PDF)
p(x̂i = x) instead. We can now define the link existence probability P(eij) as:

P(eij) = PR(dij ≤ R) =
∫
BR (0)

p(xi − xj = x)dx, (4.1)

where BR(x) is the sphere with radius R and center x.
Let e denote a path from a source (s) to a destination (d), and Esd is the set all such routes.
We then define the optimal route e∗ from s to d as the vector of links that maximize the
overall route existence probability:

e∗ = arg max
e∈Esd

P(e), (4.2)

If all links were independent as typically assumed in the literature, we would have P(e) =∏
e∈e P(e). Note that, loops are always avoided, as a route with a loop always has a lower or

equal probability of existence than the same route without the loop. Furthermore, we model
the joint existence probability of adjacent links, which slightly complicates the expression of
P(e), as explained later.
Once we have found the optimal route e∗, we can define its optimal backup as the route
b(e∗) that maximizes the success probability when the first route fails (an event denoted by
ē∗):

b(e∗) = arg max
b∈Esd |ē∗

P(b|ē∗). (4.3)

where Esd |ē∗ indicates the set of a viable paths from source s to destination d , given that the
primary path e∗ is disrupted. We can generalize the notion of backup route to compute the
optimal backup to a set of existing routes, considering the best route if the existing ones all
fail. In the following subsections, we report the derivation of the route existence probability,
along with the SMURF algorithm to calculate the primary and backup routes.

4.2.1. Link existence probability

We assume that the estimated position distribution for each node is a multivariate Gaussian
distribution, x̂i ∼ N (µi ,Σi). This assumption is justified if the tracking system uses Kalman
filtering, as is common in the literature [65]. We also assume that the positions of the UAVs
are mutually independent. Note that, the covariance matrix Σi is not necessarily diagonal,
as we expect a higher error in the direction of movement of UAVs. The PDF of the position
for the node i is given by:

pi(x) =
1

2π
√
|Σi |

e(− 1
2 (x−µi )TΣ−1

i (xi−µi )). (4.4)
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Hence, the link existence probability as expressed in (4.1) is given by:

P(eij) =
∫
BR (0)

e
(
− 1

2 (x−(µi−j ))TΣ−1
i−j (x−µi−j )

)
2π
√
|Σi−j |

dx, (4.5)

where µi−j = µi − µj and Σi−j = Σi + Σj , as the difference of two independent multivari-
ate Gaussian random variables is itself multivariate Gaussian with those parameters. This
integral cannot be solved analytically, but it can be computed efficiently using numerical
methods.
We now consider the existence probability P(eij , ejk ) of the two-hop path (eij , ejk ). The two
links are correlated because they share the intermediate node j . Given that the positions
xi and xk are mutually independent, the links’ existence probabilities become independent
when conditioned on xj . Hence, applying the total probability law, we get:

P(eij , ejk ) =
∫
R3

P(eij |xj = x)P(ejk |xj = x)pj(x)dx, (4.6)

where P(eij |xj = x) is given by:

P(eij |xj = x) =
∫
BR (x)

pi(y)dy. (4.7)

All the computations above are so reduced to the calculation of multivariate Gaussian inte-
grals, which can be performed efficiently with well-known numerical methods [67,68]. Since
the routing algorithm is executed by the control station, which should have sufficient compu-
tational power, there are no issues with the limited battery and computational capabilities of
the UAVs.
In order to compute the existence probability of a route, we need to consider all of its links
jointly. In the following, we simplify the probability calculation by assuming that links that do
not share nodes are independent, so that we can write:

P(e) = P(e12)P(e23|e12) ... P(en−1,n|en−2,n−1). (4.8)

This simplification is justified by the fact that each UAV’s movement is assumed to be inde-
pendent, so that it is reasonable to expect that the mutual dependence of links that do not
share nodes is negligible. By considering only the dependence on the immediately previ-
ous link, we can efficiently build a spanning tree by using the negative logarithm of the link
existence probability as a routing metric:

W (ejk |eij) = − log10(P(ejk |eij)). (4.9)

In this way, links with a higher existence probability are chosen by the routing algorithm.

4.2.2. Backup Routes Calculation

By definition, the primary route is the one with the highest probability of existence, but it might
still fail in a dynamic scenario. For this reason, we consider a set of backup routes, which
can be selected in case the primary one fails. This can significantly increase the reliability of
the transmission if the UAV swarm is dense enough, as there will be multiple viable routes
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to the destination. In order to calculate the optimal backup, we consider single-link failures
and define the conditional path existence probability, given the link is down, as follows:

bi(e∗) = arg max
b∈Esd |ē∗

P(b|ē∗i ). (4.10)

If the i-th link in the primary route does not exist, we can compute the conditional joint
position PDF of nodes i and i + 1, as:

p((xi , xi+1) = (x, y)|ēi ,i+1) =

{
pi (x)pi+1(y)
1−P(ei ,i+1) , y ∈ BR(x);

0, y /∈ BR(x).
(4.11)

We can then adjust other links’ existence probabilities with such a conditional PDF and
rebuild the spanning tree to find the backup route. After computing the optimal backup bi(e∗)
for each link failure, we compare them by considering the probability of the link failing. The
optimal backup route is then given by:

b̃(e∗) = arg max
b1,...,bN(e∗)−1

P(b|ē∗i )(1− P(ei)), (4.12)

where N(e) is the number of nodes in route e. We compute successive backups by con-
sidering single broken links in the primary route to simplify the calculation, even though the
result is slightly suboptimal.

4.2.3. Route information propagation and data plane

In our model, routing calculations are performed by the central control station, which col-
lects tracking information using LoRaWAN [65] and computes the routes. This centralized
strategy provides two key benefits: first, the information collection and decision-making is
in one place, so that the routing protocol inherently avoids loops and does not operate on
contradictory information. Second, UAVs are spared from the computational load to perform
numerical integration and calculate the route existence probability. The central node is not
so constrained, and can even offload computation to the cloud.
The propagation of the routes to UAVs can be performed via SDN [69]: this paradigm in-
volves a central controller gathering information and sending simple instructions to switch
nodes, and it has already been proposed and tested in FANETs [70]. SDN also gives UAVs
the possibility to send data over multiple interfaces, so the routing protocol could be imple-
mented in an entirely transparent way, without requiring changes to the applications trans-
mitting the data. Furthermore, SDN has been widely deployed in wired networks, and all
major operating systems now support it by default.
The use of backup routes can increase the reliability of the transmission, but there is a
trade-off: if packets are sent over multiple routes by multicast, this requires additional energy
consumption and increases the load on the network.
Naturally, this static procedure needs to be repeated over time as the UAVs move and new
information about their position becomes available. The speed of the position information
propagation should be large enough to limit the delay between the generation of the posi-
tioning update and the routing decision: route quality degrades if the controller uses outdated
information, particularly if the UAVs are fast.
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4.3. Further Steps
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the introductory work, we proposed a statistical analysis of a FANET with tracking infor-
mation, and derive the existence probability for both single links and entire routes. We then
design SMURF, a multipath routing protocol that computes a primary route (i.e., the route
with the highest existence probability), and a series of backups that allow the transmission
to succeed even if a link in the primary route is broken. Using this work, a dataset for routes
in different FANET scenarios can be generated which can then further be applied for further
work.
The work, hence, is currently being extended by considering the problem of routing over
a longer time horizon, choosing backups that can maintain the connection over time. To
exploit this correlations over longer time horizons, the research is being focused to employ
machine learning techniques with the possibility of learning how to route in a map with
several blockers and realistic propagation.
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5. Scheduling in IEEE 802.11ad

5.1. Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wi-Fi is a well-known technology that nowadays can be found everywhere, from the houses,
offices to the public institutions, and even public transportation. The IEEE 802.11ad stan-
dard [71] introduced the Millimeter Wave (mmW) band communications into Wi-Fi, as an
answer to increasing demands for higher data-rates. The standard enables multi-gigabit
short-range communications over the 60 Ghz band and offers data-rates up to 6.75 Gbps.
Its successor, IEEE 802.11ay, will be standardized by the end of 2020 [72] and can provide
even higher data-rates by employing new technologies such as Multi-User Multiple Input,
Multiple Output (MU-MIMO), channel bonding, and using higher-order modulations. This
high data-rate can pave the ways for applications such as wireless office docking, 8K Ultra
High Definition video transfer, wireless Augmented Reality (AR) and Virtual Reality (VR),
mobile front-hauling and offloading, etc. [73].
On the downside, transmission over the high mmW frequencies suffers from the increased
propagation loss, and deeper diffraction shadows, as well as the higher penetration and
reflection losses that make communication more difficult and less stable. To alleviate this
problem, the Stations (STAs) can steer their beams toward the specific direction and trans-
mits over the directional links. Transmission directionality will provide a very high potential for
spatial reuse, where multiple concurrent transmissions can coincide in the same area as long
as they do not interfere with each other. It also creates deafness issues for Stations (STAs)
and worsen the hidden node problems and makes the mobility more complex to handle. The
standard introduced a hybrid Medium Access Control (MAC), where the Stations (STAs)
can transmit during the reserved contention-free access periods (in a Time Division Multiple
Access (TDMA) manner) or over the contention-based access periods (using the Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism). The proposed
MAC has brought enough flexibilities to the system to support the coexistence traffics with
very different Quality of Service (QoS) requirements.
In this chapter, we introduce some of the resource allocation and scheduling problems and
challenges in the IEEE 802.11ad scenarios. We also discuss some pre-existing works and
propose some research directions. The rest of the chapter is organized as follows. In 5.2,
describes the main characteristics of IEEE 802.11ad. The scheduling and resource allo-
cation in IEEE 802.11ad and the literature review present in 5.3. The 5.4 provides some
research plan, and finally 5.5 concludes the chapter.

5.2. IEEE 802.11ad Overview
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we briefly describe the hybrid-MAC introduced by the standard [71] and refer
the interested readers to [74] for more details.
In IEEE 802.11ad, to simplify beam management procedure, all the Stations (STAs), includ-
ing Personal Basic Service Set (PBSS) Central Point (PCP)/Access Point (AP) (PCP/AP),
divided the surrounding area into sectors shown in fig. 5.1.
Also, the time is divided into Beacon Intervals (BIs) of about 100 ms, as shown in fig. 5.2.
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Figure 5.1: Graphical representation of sector structure in IEEE 802.11ad.
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Figure 5.2: Representation of a Beacon Interval.

Each BI is further divided into Beacon Header Interval (BHI) and Data Transmission Interval
(DTI) that briefly described in the next sections.

5.2.1. Beacon Header Interval

The BHI is used for network configuration and management operations such as network an-
nouncement, beamforming training, and scheduling and can be consist of three optional sub-
intervals: Beacon Transmission Interval (BTI), Association-BeamForming Training (A-BFT),
and Announcement Transmission Interval (ATI).
The BTI is used by PCP/AP to send Directional Multi-Gigabit (DMG) Beacon frames over
different sectors to announce the network, provide information about the BI structure, and
initiate the beamforming training procedure with other Stations (STAs). Next, the Stations
(STAs) can complete the beamforming training procedure in A-BFT, by sending Sector
Sweep (SSW) frames over their different sectors. Finally, further network management can
be done during ATI.

5.2.2. Data Transmission Interval

The DTI is mostly used for the data transmission, but it also can be used for beam refinement
procedure to improve the quality of directional links. The DTI is consist of Contention-Based
Access Period (CBAP) and Service Period (SP), which can appear in any combination and
order.
Transmission in CBAP follows the rules of Enhanced Distributed Channel Access (EDCA) in
which Stations (STAs) compete to each other before being able to transmit their data.
Conversely, Service Periods (SPs) are the scheduled access periods that dedicated to the
pairs of Stations (STAs) to transmit over a contention-free channel to guarantee QoS.

5.3. Scheduling in IEEE 802.11ad
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The IEEE 802.11ad provides a very flexible radio resource allocation and scheduling mech-
anisms. Here we describe one of the possible scenarios in a simple form, presented in
fig. 5.3.

PCP/AP

STA1
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…
ADDTS 
Request
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BHI DTI
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…

…

…

…
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Figure 5.3: Representation of ADDTS scheduling in IEEE 802.11ad.

First, during the BHI, scheduling information for the next BI is announced by the DMG Bea-
con sent by PCP/AP Later, in DTI, the Stations (STAs) can set up an allocation by sending
Add Traffic Stream (ADDTS) Request to the PCP/AP. An ADDTS Request consist of a DMG
Traffic Specification (TSPEC) element that defines the STA’s desired allocation by param-
eters such as allocation period, and the minimum and maximum allocation duration. The
PCP/AP either accept or reject the request based on its admission policy and notifies the
STA by sending an addts Response. The accepted requests are scheduled and announced
within the next BHI. By knowing the scheduling information, the transmitter and receiver
can steer their antenna toward the right direction before starting the transmission, while the
other Stations (STAs) can switch to power-saving mode. The resource allocation problem
is clearly, a trade-off between QoS traffic, which needs resources to fulfill the minimum re-
quirements imposed by the application, and elastic traffic, which still needs resources even
though with less stringent requirements.
A mathematical model for preliminary allocation of SP for Variable Bit Rate (VBR) flows de-
rived in [75], to determine TSPEC parameters to minimizing the amount of allocated time
while meeting applications QoS requirements. Other works consider different aspects of the
DTI. For example, [76] derives the theoretical maximum throughput for Contention-Based
Access Periods (CBAPs) when two-level MAC frame aggregation is used. Beamforming is
also considered in [77], which proposes a joint optimization of beam width selection and
scheduling to maximize the effective network throughput, while other works, though not
specifically concerning IEEE 802.11ad, deal with transmission scheduling for mmW com-
munications [78].

5.4. Future Research
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we highlight some possible research directions. First, we describe the avail-
able tools for the research, and then we propose a possible research plan.
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5.4.1. Available Research Tools

The commercial devices that support the IEEE 802.11ad standard are currently available.
However, in most of the case, they are costly, and they do not provide full access to low-level
functionalities to implement and compare different resource allocation methods. Instead,
simulators give a more flexible, timely, cost-effective, and arguably less realistic approach to
analyzing such a system.
The Network Simulator 3 (ns-3) module for IEEE 802.11ad standard [79], is publicly avail-
able, and in its last release, it supports more accurate and realistic channel models based
on ray-tracing [80].
Resource allocation and scheduling algorithms, historically, are based on heuristics. How-
ever, in recent years, following the concepts of self-driving networks [81], tremendous re-
search effort aimed to design Machine Learning (ML) based approaches, where the algo-
rithms learn from real on-line data instead of manually-designed methods. OpenAI Gym is
a well-known Reinforcement Learning (RL) toolkit that has already been integrated by most
ML frameworks. Given their potential in many fields of communications, OpenAI Gym has
also been integrated into ns-3 [82] with the name of ns3-gym.

5.4.2. Research Plan

From one perspective, the resource allocation in IEEE 802.11ad can be divided into two
sub-problems: In the STA, translating the information given by the application to the desired
allocation, described by DMG TSPEC elements. Besides, in the PCP/AP side, efficiently
scheduling the DTI by considering the availability of resources and different networking met-
rics (e.g., delay, jitter, throughput, fairness).
Regarding the former, the applications may have very dynamic traffic patterns in terms of
inter-packet arrival time (e.g., frame-rate drop in video applications) and the packet size (e.g.,
when compression is considered). Meantime, the transmission conditions may change very
rapidly due to environmental changes, blockage, and mobility. In this situation, the RL agent
can learn the patterns and update TSPEC element in a proactive manner. On the other side,
the PCP/AP should apply effective scheduling methods, taking into account different factors
such as resource availability, network metrics, and possible evaluation of the Modulation
and Coding Schemes (MCSs) since the packet transmission time mostly depends on it.
An RL agent can jointly adapt the MCS and perform scheduling to optimize the network
performance by observing the evolution of both channel statistics and network traffic.
A significant development effort needs to be taken in creating a proper simulation environ-
ment, with particular attention to the computational complexity where, e.g., 10 s of simulation
for high data-rate traffic may currently take around an hour in ns-3. This makes the design,
evaluation, and optimization of scheduling protocol a lengthy process, and even impossible
when it comes to RL that needs to iterate over thousands of episodes to learn the dynamics
of the environment. One approach to solve the slow simulation problem is to pre-train the
agent on a fast and simple simulator to learn some basic and general rules and later train
it on a realistic simulator. To further decrease the simulation time, it is also possible to cre-
ate a database of simulation results and use them to passively train the agents [83] before
fine-tuning their behavior on the real simulators. Transfer learning can also be considered
as another approach to speed up the convergence of the RL algorithm to effective policies
in different scenarios.
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5.5. Conclusions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter, we briefly described the main characteristics of IEEE 802.11ad by focusing
on the MAC layer and introduced some of the possible scheduling mechanisms provided by
the standard. We also discussed some resource allocation and scheduling challenges in the
standard and gave possible research directions to replaced the complicated heuristics with
the ML and RL based methods.
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6. Lorawan Network Management

Recently, wireless sensor networks (WSNs) have become one of the most practical research
paradigms, providing services in numerous fields ranging from construction to manufac-
turing, monitoring to smart solutions and from normal cities to the mountain areas. WSN
is a wireless network that consists of base stations and numbers of nodes (wireless sen-
sors).These networks are used to monitor physical or environmental conditions like sound,
pressure, temperature and efficiently transfer data through the network to a main location.
This coherent interaction among diverse objects such as sensors, nodes, gateways and
internet, makes WSN a revolutionary prototype that can provide ubiquitous and real time
applications. LoRa (long range) is one of the most promising wide area communication
technologies being used frequently in IoT.
Lorawan with limited battery, Central Processing Units (CPUs), and memory resources is a
widely implemented technology for early warning detection systems. The main advantage
of Lorawan is their ability to be deployed in areas that are difficult to access by humans.
In such areas, regular maintenance may be impossible; therefore, Lorawan devices must
utilize their limited resources to operate for as long as possible, but longer operations require
maintenance.
A plethora of significant applications can be provided by WSN such as in construction WSN
can collect the data needed by the civil engineers to centrally monitor their assets, analyze
risks, and preplan their responses. Thus, this provides efficient geotechnical and structural
monitoring. Similarly, remote monitoring of soil parameters such as humidity, temperature,
etc. in real time to improve crop production, environmental monitoring, monitoring of green
energy systems, water monitoring, waste management, road & traffic management, disaster
mitigation, etc [84]. Other than this, Semeteh has made a system of sensors for remote
monitoring of patients in clinics. The benefit is that the patients do not need to wear any
sensors. Another great example of WSN application is the traffic monitoring solutions. Apart
from these, there exist a wide range of applications, however, there are limitations in the
resources that must be taken care of. These limitations are mostly due to the constraints of
an individual node or the gateway such as minimal power and processing capacities.
Resource management in Lorawan has been a centre of interest for researchers in both
academia and industry. The need to develop more robust methods has always triggered
new challenges in the field. These challenges include the heterogeneity of the devices, size,
cost and battery usage. A significant amount of work has been done at the research level
but surprisingly, a little of them is used in a real WSN. At the system level, more work has
been put into practical level because of its promising applications. System level manage-
ment consists of data administration, routing solutions, energy efficient solutions, devices’
diversity management, memory and network management etc. A latest direction in resource
management is the inclusion of clouds, fogs and the servers from which WSN can borrow
the resources whenever it requires. Thus, despite the limitations, all this work has made it
possible to use the data for correlation and comparison for various applications.

6.1. Resources of Lorawan

Dissemination Level: Public. Page 38



H2020 Grant Agreement Number: 813999
Document ID: WP5/D5.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lorawan is an advanced form of wireless networking where several sensors are attached
with the network to collect a diverse variety of data. However, the network nodes are not
abundant in resources like memory, power and processing capability. This is the tradeoff
to the phenomenal characteristics of WSN. The nodes are mostly placed in challenging
environment so they are supposed to be small, simple to install and should be capable to
ensure harsh environments. Hence, it becomes impossible to instill high memory units, very
large batteries and highly capable processing unit in the hardware.
From the memory perspective, Nowadays, some latest WSNs are using clouds and fog
technology. Similarly, in such WSNs, clouds can be used for performing the tasks that
require high end processing such as data analysing and graph visualization. In addition
to this, some WSNs are also using solar rechargeable batteries. This solves the problem of
battery related issues but not feasible in all applications for instance, the nodes do not get the
sunlight when used in tunnel monitoring or underground scenarios/applications. Therefore,
it is inevitable to manage the limited resources efficiently.

6.1.1. Constraints of Lorawan

• Storage capacity is only a few hundred kilobytes.

• Limited processing power upto 8MHz

• Works in short communication range which consumes a lot of energy

• Requires minimal energy constraint protocols

• Batteries have limited life time

• Passive devices provide little energy

6.2. Non Machine Learning based solutions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Resource management in WSNs has been the focus of interest for many years now because
of the huge applications it provides [85]. Studies have been conducted to carefully manage
the resources at the operating system level [86]. This provides the solution for the limited
resources in WSNs and addresses the scalability issues by leveraging the cloud storage
and computation services. Researchers have also suggested adding cloud services into the
wireless sensor networks and showed that this results in a more practical approach, called
Sensor Clouds [87]. Sensor cloud infrastructure is designed in a way to handle numerous
physical sensors with different owners and paradigms. Hence, through this sensor cloud
various sensors groups can share the physical sensors. These sensors produce data in
massive amount. As the memory of the sensors is limited, researchers have also encour-
aged the idea of employing virtual memory into the sensor networks [88].
WSNs have been integrated with FaTVM named virtual memory for carrying out data inten-
sive tasks [89]. FaTVM makes sensor nodes to perform complex computations without using
much energy with extensive RAMs. FaTVM has the secondary storage with NAND flashes
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and also has the functionality for reducing overhead of the virtual memory . Another idea
is to rent the resources from a server that has enough resources and can solve the limited
resources problems in WSNs [90].

6.3. Machine Learning based solutions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The possibility of adding cloud storage or server is available, still it is critical to utilize the
deployed resources of sensors as efficiently as possible. This is compulsory for the reliable
communication in WSNs. There are many associated challenges in this such as figuring
out the deficiency of resources, redundancies, controlling the scheduling in an area. Once
these challenges are overcome, the network can provide high efficiency localized solution
for the maximum-minmum problem. The resource constrained nodes have to operate in
dynamic environment. Hence, the management of the resources should be well optimized
for adaptive and automatic tasks.
Machine learning has high hopes to perform excellently for different kinds of resource man-
agement in networks. Researchers have started implementing machine learning and also
deep learning algorithms for this problem such as recently Independent Reinforcement Learn-
ing (DIRL) which has been proposed for the optimization of task management [91]. This al-
gorithm gradually learns using the local data present at the nodes with reinforcement learn-
ing. DIRL focuses on optimizing the overall system performance and manages a wide range
of parameters such as energy consumption, network lifetime and many more.
State of the art machine learning techniques have also been proposed focusing on individual
resource management areas. The study has proposed Support Vector Machine (SVM) for
energy efficiency in networks [92]. This approach is tested based on the user satisfaction
level as most of the times comes at the cost of compromising on user satisfaction. Their
results show a tradeoff between energy efficiency and user satisfaction level. Literature
review shows that enough studies have proven the effectiveness of machine learning in this
area [93].
Due to challenges in data accumulation in WSNs, reinforcement learning has been used
extensively in the field. Researchers have used reinforcement learning for energy efficiency
[94]. They used the reinforcement learning based algorithm to effectively allocate power to
the software update services. Another study also used reinforcement learning for improving
routing efficiency and reduces the interferences in the network. Through this algorithm,
transmission opportunities through the network also maximize [95].

6.3.1. Challenges for lorawan network managment using machine learning

One of the biggest challenges to use machine learning for resource management is the data
collection. It is mandatory to store the massive amount of data from all nodes and gateways
in a server so that the data can be analyzed. Lots of information may be lost in this process.
Some scenarios of WSNs are particularly difficult to be done with machine learning such
as sleeping cell detection [96]. Such nodes lack the essential data required for the timely
detection. As a result, applying supervised learning techniques becomes impossible and
hence the optimization goals suffer.
Second challenge is the choice of the appropriate machine learning algorithms for the tasks.
These algorithms can be trained online or offline [97]. Offline training can be suitable for the
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tasks where instant response is not required. On the contrary, online training is necessary to
adapt to the dynamic environment instantaneously, for instance, when the tasks are mainly
dependent on the time. However, using online training with long time period and highly
dependant on the time results in difficulty to produce enough accurate predictions.
In summary, the abundant literature and practical results show that inclusion of machine
learning is a feasible idea. However, it still has many technological complexities. Real time
intelligence is required particularly for decentralized systems. Data collection and selection
of appropriate training algorithms are essential for meeting the complex demands of upcom-
ing latest WSNs.
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7. Benchmarking solutions to RRM problems

As a rapidly growing field, numerous ML solutions to communications problems are pub-
lished every day. It is therefore difficult to keep up with all the proposals, and much less
compare them objectively to judge which ones are novel or promising. A major obstacle in
this task is the lack of standard problem definitions and implementations against which to
benchmark. Most publications in this arena include a definition of the problem jointly with
a solution proposal. Although this approach satisfies self-containment requirements, it also
facilitates meddling in the problem definition, often inadvertently by the authors themselves.
Instead, blinded studies, where the team proposing a solution differs from the one defining
the problem seem more reliable and less prone to biases.

7.1. Wireless Suite
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Windmill project is currently exploring approaches to address the problem described
above. One of such approaches is Wireless Suite, which is a collection of problems in
wireless telecommunications, implemented as a Python package. Furthermore, we have
open sourced it and made it available online on Github at

https://github.com/nokia/wireless-suite

Wireless Suite is born with the ambition of becoming the reference library against which to
evaluate innovations in wireless telecommunications. The library is still in its early days and
it only contains one problem definition: the TimeFreqResourceAllocation-v0 environment.
By open sourcing it, we expect it to grow over time as the community adds newer and more
challenging problems. Similarly, we expect researchers in the field of ML for communications
to evaluate their solutions against the problems provided in Wireless Suite.
The TimeFreqResourceAllocation-v0 environment simulates an Orthogonal Frequency Di-
vision Multiplexing (OFDM) resource allocation task, where a limited number of frequency
resources are to be allocated to a large number of User Equipments (UEs) over time. An
agent interacting with this environment plays the role of the MAC scheduler. Each time step,
the agent must allocate one frequency resource to one of a large number of UEs. The agent
gets rewarded for these resource allocation decisions. The reward increases with the num-
ber of UEs, whose traffic requirements are satisfied. The traffic requirements for each UE
are expressed in terms of their Guaranteed Bit Rate (if any) and their Packet Delay Budget
(PDP). Researchers are then invited to develop new agents that interact with this environ-
ment and take effective resource allocation decisions.
It is worth noting that Wireless Suite is only one of a myriad of possible tools that could be de-
ployed to address Radio Resource Management (RRM) problem benchmarking. We there-
fore expect additional frameworks and techniques to be developed as the project evolves.
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