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Abstract:
Machine Learning (ML) approaches have attracted researchers
in wireless communications to employ and develop ML algo-
rithms in order to exploit information about the radio channels.
However, ML methods are data hungry and to obtain reliable
results huge amount of real world measurements are needed.
This problem can be circumvented by generating authentic syn-
thetic data which mimics the behavior of realistic data. To
do so, accurate simulators need to be designed and created
based on mathematical models and measured data. In this re-
port, synthetic data use cases in three different applications are
briefly discussed. An overview of channel models appropriate for
Fifth Generation and Beyong Fifth Generation (B5G) systems is
given. Channel model characteristics including path loss, Large-
Scale Fading and Small-Scale Fading models, are discussed,
and differences of Millimeter-Wave and microwave models are
explained. The QUAsi Deterministic RadIo channel GenerAtor
(QuaDRiGa) and ray-tracing channel simulators are discussed.
For ML use cases where radio characteristics are to be predicted
from traces of user channel measurements, spatial consistency
of the channel model is paramount. Spatial consistency of chan-
nels generated in QuaDRiGa is investigated here. As an example
use of spatially consistent channel models, channels generated
by a ray-tracing model are used in a channel charting based algo-
rithm for handowver, and the performance of the system is eval-
uated. One of the B5G developments that is often highlighted
is the integration of wireless communication and radio sensing.
The potential of communication-sensing integration of Large In-
telligent Surfaces (LIS) is still under development. By treating
a LIS as a radio image of the environment, sensing techniques
that leverage the tools of image processing and computer vision
combined with machine learning can be undertaken.
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Report Organization In this report, we consider Millimeter-Wave (mm-Wave) channel mod-
els and provide two different system simulators for Massive-MIMO (mMIMO) mm-Wave sys-
tems. In Section 1, the role of synthetic data in wireless communication research field
is explored and three different applications powered by machine learning are introduced.
In Section 2, basic concepts and models of the wireless channels are discussed. Also,
mm-Wave channel model, basic principals and the differences between microwave and
mm-Wave channels are discussed. In Sections 3 and 4, QUAsi Deterministic RadIo channel
GenerAtor (QuaDRiGa) and Ray-tracing models are presented and simulation results of a
few different scenarios are presented. In Section 5 examples of channel generation using
different models are presented. Finally, in Section 6, conclusions are drawn.

Notation We adopt the following notation: matrices and vectors are set in upper and lower
boldface, receptively. (·)T , (·)∗, (·)H , | · |, || · ||p denote the transpose, the conjugate, the
Hermitian, the absolute value, and the p-norm, respectively. Tr(A) denotes the trace of
matrix A. Calligraphic letters denote sets, e.g., G, and |G| denotes the cardinality of G. R+

is the set of non-negative real number, C is the set of complex numbers, and CN×M is the
space of N × M matrices. E[·] denotes expectation. vec(X) denotes the vector obtained of
stacking the columns of matrix X on top of one another.
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1. Synthetic Data Generation for WP4 Research Tasks

During the past four decades, wireless communications have experienced four generations
of technologies and the latest, Fifth Generation (5G) is here, the standard is ready, and
products are being sold. One key challenge is the development of extremely sophisticated
wireless systems that hold many promises such as: ever-higher data rates, networks of
Unmanned Aerial Vehicle (UAV), massive Machine Type Communications (mMTC) and au-
tonomous cars. The range of service requirements is expected to be very diverse. A dra-
matic boost will come with the introduction of Internet of Things (IoT) systems. The antenna
densification at the network side comes as a natural mirroring solution to absorb the upcom-
ing traffic surge while responding to the need for high data rates. The need for high data
rates will continue to be one of the drivers of the evolution of wireless networks, especially
with emerging bandwidth-hungry applications such as virtual reality.
The design approaches used in current wireless systems rely on mathematical models, de-
veloped to represent their actual fundamental physical behavior. These models are used
to formulate specific performance optimization problems via carefully constructed objective
functions. This approach is not easily amenable to encompassing a multitude of dense, in-
terconnected networks obeying different performance metrics. Due to the shortcomings of
the optimization/management tools and the simple models employed in the current wireless
systems, the future generation of wireless networks is in the need of new tools that can
scale with their extreme levels of complexity and drive their evolution towards the promised
performance level.
Future wireless networks will be a formidable sensing and data collection system. While data
from user devices or sensing networks is used to extract contextual information, wireless net-
works offer the distinctive opportunity to gather wireless channel measurements. Thanks to
the antenna densification at both the device and network side, those measurements provide
a very fine sampling of the space, rich in information about the radio channels, the traffic
patterns or active wireless devices. Thus, huge volumes of valuable data are produced by
the network and Users which could be leveraged by ML tools.
Machine Learning is a versatile tool that does not require detailed specification of a mathe-
matical model based on the physical properties of the system [1]. Rather, the main principle
behind ML is to learn from observations, examples or experience, and build workable mod-
els of manageable complexity and algorithms that make decisions and predictions. In this
regard, the massive data flows in future communication networks can be seen as an asset
rather than a burden. Additionally, ML facilitates automation, thereby decreasing the main-
tenance costs and assisting the deployment of robotic networks (e.g. networks of UAVs or
autonomous cars).
The objective in Work Package 4 (WP4) is to develop ML methods for the physical layer in
massive multi-antenna systems. One goal is to learn and anticipate spatio-temporal features
related to the wireless channel in multiuser multi-antenna networks [1]. The radio channel
poses a tough challenge to conventional ML methods due to its fast variability. Conventional
physical layer designs are based on reactive estimation of the channel, and optimization
in feedback loops. For future systems with extreme dimensionality, proactive methods are
needed, based on anticipatory estimation of the radio channel. Tools will be developed to
acquire different levels of information about the channel. Radio maps describing channel
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characteristics in mMIMO systems will be considered, leading to anticipatory optimization of
user-specific spectral resources. Distributed and centralized processing will be addressed,
in particular distributed channel estimation and multi-user beamforming in mMIMO, multi-
cell, connected vehicles.
Collecting labeled data which is a necessity for ML based models is still a consideration in
wireless communications community. Obtaining a real data set is expensive and limited to
the measurement setup. Therefore, results are difficult to generalize to other radio environ-
ments, or a different radio frequencies. Since manual labeling which is mainly performed
by humans is costly and drastically time consuming, synthetic data generation is a viable
alternative for generating training data for wireless ML tasks. Synthetic data can be easily
generated based on previously evaluated and (experimentally) verified models. As men-
tioned, providing realistic data on large scale is not feasible from a business perspective.
Also, most companies pioneering wireless technologies have strict policies on sharing data
which hinders research performed from outside of such companies.
One approach is to generate synthetic data that have similar characteristics to the original
data but the value of not requiring direct measurement. By so doing, the privacy constraints
of companies on data is circumvented and a vast set of assumptions could be considered.
The challenging part of generating synthetic data is capturing statistical and structural char-
acteristics of the real data. In addition, tradeoffs between computational complexity, run
time, and synthetic data level of statistical accuracy must be considered.
Therefore, in this work package, synthetic channels will be used to generate data for physi-
cal layer machine learning problems. The problems of wireless channel prediction for beam
and cell handover management, collaborative deep learning for distributed power control,
and predictive machine learning for multiuser beamforming will be addressed. When dis-
secting these problems we find that for distributed power control, discussed in section 1.2,
the characteristics to learn are not seriously affected by the details of the channel model.
For prediction of beams, and handovers, discussed in section 1.1 and for exploiting Channel
state Information (CSI) in LIS communications in section 1.3, spatial consistency of chan-
nel models is crucial. Spatial consistency has conventionally not been an issue in channel
models used for wireless system modeling, only recently has it been raised to a desired
feature of models. Moreover, the main avenue for 5G and beyond systems to provide added
value over 4G is in the possibility to use mm-Wave channels. As a consequence, in the
coming chapters we shall concentrate on spatially consistent channel models for mm-Wave
systems.
Note: Originally, the planned title of this deliverable was “Massive-MIMO mm-Wave Channel
Model and System Simulator Description”. The title was changed to the current one better to
reflect the diverse requirements on synthetic data generation of the research tasks of WP4.
Much of the content of sections 2, 3 and 4 fall under the original title.”

1.1. Multipoint Channel Charting for Wireless Channel Prediction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Future wireless communication systems must sustain a massive increase in traffic volumes,
number of terminals, and reliability/latency requirements [2]. In order to cope with these
challenges, researchers have proposed a range of new technologies that improve spec-
tral efficiency through mMIMO, increase bandwidth by harnessing mm-Wave bands for mo-
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bile communication, and rely on an extreme densification of network elements. While the
advantages of these emerging technologies are glaring, they entail severe practical chal-
lenges. Mobility, in particular, poses problems for dense small-cell networks [3], as well as
for mMIMO and mm-Wave networks, which provide extremely fine-grained angular separa-
tion.
To efficiently manage a mMIMO network, and to perform cognitive networking tasks, the net-
work states which include the spatial distribution and trajectories of the UEs, neighborhood
relationships among the UEs, and Handover (HO) boundaries among neighboring cells need
to be estimated. A novel ML framework called Channel Chart (CC) based on the massive
amounts of CSI available at the base stations is proposed for a single-cell Multi Input Multi
Output (MIMO) system in [2]. CC applies unsupervised ML techniques to create a radio map
of the cell served by the BS, which preserves the neighborhood relations of UEs, using fea-
tures that characterize the Large-Scale Fading (LSF) effects of the channel. The obtained
CC can be used for local Radio Resource Management (RRM) in the cell.
However, cell edge UEs may not be accurately located in the chart due to their low SNR at
the cell edge. In [4], a MPCC framework is proposed to support advanced multicell RRM
and to accurately map cell edge UEs. First, each BS generates its own dissimilarity matrix
between the users it can decode; then, the dissimilarity matrices are fused and used to con-
struct the MPCC. A CC is constructed using an unsupervised ML framework that processes
the dissimilarity matrix, manifold learning is used to dimensionally reduce the CSI feature
space. The block diagram of principals of MPCC is shown in Figure 1.1. The trustworthi-
ness and continuity measures show that the proposed MPCC is capable to preserve the
neighborhood structure between UEs in the network. MPCC-based approach entails more
computational efforts compared to other approach at the BSs to compute the dissimilarity
matrix between the UEs seen by the same BS [5].

Figure 1.1: The principals of MPCC.

SNR prediction of neighboring BSs is exploited based on relative locations, such as CC. This
is an example of data-driven wireless communication problem. SNR prediction based on
CC is an attractive approach since neither the physical location information nor the downlink
channel measurement at the UE terminal are needed to predict the SNR of a neighboring
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BS. HO algorithms can be designed based on the predicted neighboring BS SNR, reducing
power consumed at the UE, and signaling overhead. Therefor, machine learning algorithms
could be exploited to predict the SNR of a user transmitting at a neighboring BS in a mMIMO
cellular system. This information is needed for HO decisions for mobile users. For SNR
prediction, only uplink channel characteristics of users, measured in a serving cell, are used.
Here, we learn an annotation of the CC in terms of neighboring BS signal qualities. Such
an annotated CC can be used by a BS serving a UE to first localize the UE in the CC,
and then to predict the signal quality from neighboring BSs. Each BS first constructs a CC
from a number of samples, determining similarity of radio signals transmitted from different
locations in the network based on covariance matrices. Then, the BS learns a continuous
function for predicting the vector of neighboring BS SNRs as a function of a 2D coordinate
in the chart. The considered algorithm provides information for handover decisions without
UE assistance.

1.2. Collaborative Deep Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It has been firmly established that cooperation between wireless transmitters positively af-
fects the network performance, leading to gains that would not be otherwise achievable.
Given the fact that cooperative behaviours can be beneficial in a variety of domains ranging
from e.g. resource (time/frequency/power) control to e.g. beam selection, they become the
end goal of a multitude of networking problems.
Broadly speaking, cooperation entails the interaction of multiple entities finalized to pursue
a common goal that is mutually beneficial. In wireless networks this definition encompasses
all situations where transmitters need to design their communication parameters based on
local observations of the channel state in order to maximize a common utility. A straight-
forward approach to establish cooperation relies upon a central processing unit gathering
local observations from network devices and yielding the group decision as the output of an
optimization program maximizing the metric of interest (or a surrogate of it). While being
simple and yielding the best performance the centralized solution comes with many draw-
backs, notably round trip delays and single point of failure vulnerabilities. These clash with
the present network requirements put forward by Ultra Reliable and Low Latency (URLL)
communications and they justify the growing interest for the decentralized counterpart of the
coordination problem. In this setting, each device determines autonomously its action based
only on local observations, possibly available with different precisions from device to device.
As a result, the limits of coordination are posed by degree of correlation between CSI across
devices and the true system state. It becomes of primary importance leveraging synthetic
data generation procedures in order to investigate the limits of decentralized cooperation as
a function of the properties of these probability distribution.

1.2.1. Role of Synthetic Data Generation in Collaborative Machine Learning

It is well-known that the ability of machine learning models to correctly predict labels of
unseen data is positively affected by the size of the training dataset. However, obtaining
large datasets by real world measurements and manual labeling can be costly and can arise
privacy issues, for example when tracing sensible data like Global Positioning System (GPS)
position, traffic packets, cached contents, etc. On the other hand, data generators allow
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to mimic the behaviour of a real world phenomenon in a controlled fashion and provide
tools to log quantities of interest, hence representing cheap and versatile alternatives in
order to access large and possibly high fidelity datasets. The degree of control on the
fabricated data and the active sampling capabilities offered by simulators allow to overcome
many issues related to real-world measurements, such as unbalanced classes and under-
represented events. For these reasons, in the context of wireless communications, where
datasets are difficult to obtain by direct measurements but mature network simulators and
precise mathematical models are available, synthetic data generation plays a key role.
Specifically for collaborative machine learning, synthetic data generation acquires even greater
importance. The distributed information structure of multi-agent problems entails data log-
ging at a network level across a multitude of different devices; moreover, both local observa-
tions and world state depend on the behaviour of agents, as a consequence datasets cannot
be the result of a one-time sampling but they need to be generated in real-time during train-
ing in order to account for distribution shifts. These render real-world measurements even
more cumbersome and potentially dangerous when the application at hand can harm hu-
mans or damage infrastructures (e.g. autonomous driving, robotics arms, etc.) Finally, the
problem of model mismatch, that can hamper synthetic data generators to a point that the
gains of accessing a larger dataset is nullified, becomes secondary in the context of multi-
agent learning. In this setting dataset are used to study agent interactions and the effect of
decentralized information structures on the coordination problems, rather than on investigat-
ing to what extent machine learning models can extract and exploit realistic patterns from
simulated data. Therefore for collaborative machine learning the benefits of synthetic data
surpass its drawbacks and explains why most of the research output in this field is based on
fabricated datasets.

1.2.2. Data-Driven Solution of the Coordination Problem

With the purpose of highlighting the role of data-driven tools in the context of wireless co-
ordination, we now formalize the decentralized coordination problem using team decision
formalism.
A wireless coordination problem can be defined by the following quantities:

• K : the number of interacting wireless devices (decision makers).

• sss ∈ S: the true state of the communication system.

• ŝssj ∈ Ŝj : the local information at device j about the system state.

• πj : Ŝj → Aj : the strategy of user j , mapping local observations into communication
parameters.

• g : S ×∏K
j=1Aj → R: a common network utility, function of the system state and the

decision of the various wireless devices.

• Ps,ŝ1,...,ŝK : the joint distribution governing the relation between system state and the
local observations at the wireless devices.
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The solution to the coordination problem is a set of strategies that maximizes the expected
utility and it is the result of the following functional optimization problem

(π∗1, ... , π∗K ) = arg max
π1,...,πK

E
[
g(sss, π1(ŝss1), ... , πK (ŝssK ))

]
(1.1)

where the expectation is taken with respect to the random variables in bold.
The distributed nature of the information is one of the distinctive traits in decentralized co-
ordination problems. Each decision maker j is endowed with a local observation ŝssj that
discloses only partial information about the world state sss and other Decision Maker (DM)
observation {ŝssi}i 6=j . For instance, in a wireless network design problem sss may represent the
global channel state information matrix while ŝssj can be a local feedback, noisy global feed-
back, hierarchical feedback, etc. Also note that the optimization variables in (1.1) lie in the
space of functions. Functional optimization problems are notoriously difficult to tackle and
in order to circumvent them it is customary to represent each policy πi by a parametrized
function πθi

i , recasting the original problem into the following

(θ∗1, ... , θ∗K ) = arg max
θ1,...,θK

E
[
g(sss, πθ1

1 (ŝss1), ... , πθK
K (ŝssK ))

]
(1.2)

A particular choice of parametrized policy is that offered by the output of a D (DNN) parametrized
by θi . In this case the policies are realized by Team-DNNs that work cooperatively so as to
solve the maximization problem in (1.2). This allows exploiting their approximation power
and the efficient parameters optimization algorithms available (e.g. back-propagation), lead-
ing to a fully data-driven procedure to design decision policies. Namely, given that it is
possible to sample a training set D = {(s, ŝ1, ... , ŝK )i}n

i=1 ∼ P⊗n
s,ŝ1,...,ŝK

1 of size n, the neural
networks can be trained using gradient ascent with the following empirical average of the
objective function

U(θ1, ... , θK ) =
∑

(s,ŝ1,...,ŝK )∈D

g(s, πθ1
1 (ŝ1), ... , πθK

K (ŝK ))
|D| (1.3)

However, it is important to notice that the distributed information model abstains DMs from
accessing the gradient information, which depends on the true state of the world and on the
actions of the other DMs. As a result, the training phase has to be centralized with perfect in-
formation sharing, temporary violating the original decentralized information model and, only
after convergence, the optimized models can be distributed to the different DMs for decen-
tralized testing. This procedure goes under the name of “centralized training/decentralized
testing" paradigm.

1.2.3. Distributed Power Control

Machine learning has proved to be extremely successful in extracting and leveraging pat-
terns in real world data; nonetheless, synthetic data generation can be valuable, especially
when the employed generative model well-represent the real world. In order to exemplify
the generation of synthetic datasets we consider the distributed power control problem as a
particular instance of the coordination problems in wireless networks.

1P⊗n
s,ŝ1,...,ŝK

denotes the product measure Ps,ŝ1,...,ŝK ⊗ · · · ⊗ Ps,ŝ1,...,ŝK︸ ︷︷ ︸
n times
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The problem of distributed power control in interference channels with noisy CSIT can be
formulated as a coordination problem in the sense (1.2), as seen below. Consider a K -
user interference channel with single-antenna transmitters (Transmitter (TX)s) and receivers
(Receiver (RX)s), in which TX i serves RX j with a maximum transmit power Pmax . The
decision makers are the K TX and the channel gain matrix GGG ∈ RK×K ∼ PG is the system
state. The local observation at TX i is ĜGGi , a noisy estimate of channel gain matrix GGG. In
order to access a training set coming from the joint distribution PG,Ĝ1,...,ĜK

assumptions on
the channel gain matrix distribution and the decentralized information models has to be
done.
Assuming independent Rayleigh fading for each TX-RX pair, the channel gain matrix GGG can
be obtained sampling each channel gain Gi ,j according to the Rayleigh distribution, namely

f (Gi ,j) =
2Gi ,j

Ωi ,j
e−G2

i ,j/Ωi ,j (1.4)

where Ωi ,j is the average power gain accounting for path loss and average blockage for the
link between TX i to RX j .
A simple, yet versatile, model for the local channel information consists in assuming that the
noisy estimate of the true channel gain matrix at user i obeys the following relation

ĜGGi = ΓΓΓi �GGG + ΓΓΓ′i �∆∆∆i (1.5)

where {ΓΓΓ′i}j ,k =
√

1−
{
ΓΓΓ2

i

}
j ,k with ∆∆∆ being a noise matrix (e.g. Independent and Identically

Distributed (i.i.d). Rayleigh entries) and � defines element wise product . The matrix ΓΓΓi

is linked to the CSI quality at user i . Each entry {ΓΓΓi}j ,k ∈ [0, 1] represents the quality of
channel gain information of the j − k link and spans the range from the perfect channel gain
information ({ΓΓΓi}j ,k = 1) to the case where local observation are completely uncorrelated with
the true channel state ({ΓΓΓi}j ,k = 0).
Under these assumptions, synthetic datasets can be generated to train and to assess the
performance of data-driven distributed power control policies. For instance, if the goal is
to maximize the network sum-rate, under the assumption of Gaussian distributed with zero
mean and unit variance information symbols and noise, the utility function can be expressed
as

R(GGG, P1, ... , PK ) =
K∑

i=1

log2

(
1 +

Gi ,iPi

1 +
∑

j 6=i Gj ,iPj

)
(1.6)

Parametric models, as DNNs, can then be used to implement the power control policies at
the various transmitters

πθi
i : ĜGGi → Pi ∈ [0, Pmax ]. (1.7)

Then, in order to tune the model a sampled dataset D = {(GGG, ĜGG1, ... , ĜGGK )i}n
i=1 ∼ P⊗n

GGG,ĜGG1,...,ĜGGK

can be considered for maximizing the empirical utility function

U(θ1, ... , θK ) =
∑

(GGG,ĜGG1,...,ĜGGK )∈D

R(GGG, πθ1
1 (ĜGG1), ... , πθK

K (ĜGGK ))
|D| . (1.8)
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1.3. Predictive Machine Learning for Multiuser Beamforming
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mMIMO is a primordial technology for 5G wireless networks with main purpose to increase
area spectral efficiency [6]. In massive MIMO, the base station is equipped with a very
large number of antennas. Looking towards post-5G, researchers are defining a new gen-
eration of base stations that are equipped with an even larger number of antennas. The
concept of LIS designates a large continuous electromagnetic surface able to transmit and
receive radio waves. A key conceptual enabler that is recently gaining increasing popularity
is Holographic MIMO (HMIMO) that refers to a low-cost transformative wireless planar struc-
ture comprised of sub-wavelength metallic or dielectric scattering particles, which is capable
of shaping electromagnetic waves consistent with desired objectives [7]. These large sur-
faces are placed on walls for example and are easily integrable into the surroundings. In
practice, LIS is composed of a collection of closely spaced tiny antenna elements. While the
potential for communications of LIS is being investigated, sensing features must be taken
into account. Indeed, such large surfaces contain many antennas that can be used as sen-
sors of the environment based on the CSI. The main useful characteristic of CSI exploitation
in LIS is its spatial consistency. That is, thanks to the disposition of the antenna elements
compounding the surface, a really accurate and informative representation of the radio prop-
agation environment can be acquired and, posteriorly, be treated as an image to meet the
usage of computer vision algorithms.
One of the objectives of this project is to develop sensing techniques based on the CSI col-
lected by the surfaces and provide a high resolution image of the propagation environment.
The second objective is to exploit sensing to improve the design of wireless communica-
tions. The sensing techniques will be designed based on machine learning and computer
vision techniques. For that we will use existing research in the fields of mMIMO systems and
machine learning methods specially computer vision ones, in order to take advantage of the
image information to construct feature maps making use of the CSI.

1.3.1. Holographic Sensing

A hologram is a recorded interference pattern as a result of constructive and destructive
combinations of the superimposed light-wavefronts, i.e., a photographic recording of a light
field [8]. In the wireless context, LIS could be described as a structure which uses elec-
tromagnetic signals impinging in a determined scatterer in order to obtain a profile of the
environment. That is, we can use the received signal power received at each of the multiple
elements of the LIS to obtain a high resolution image of the propagation environment. Using
this approach, the complexity of the multipath propagation is reduced by representing it as
an image. This provides a twofold benefit: i) the massive number of elements that composed
the LIS leads to an accurate environment sensing, and ii) it allows the use of computer vision
algorithms and image processing techniques to deal with the resulting image.
As an illustrative example, Fig. 1.2 shows the holographic images obtained for different prop-
agation environments. Specifically, Figs. 1.2a and 1.2b correspond to a LoS propagation
(no scatterers), whilst Figs. 1.2c and 1.2d were obtained from an industrial scenario with a
rich scattering. Note that, in the case in which different scatterers are placed, their position
and shapes are captured by the LIS and represented in the image. Thanks to the large aper-
ture offered by the surface, we are able to reconstruct a feature map (image) that describes
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what is occurring in space, based on the information acquired from the radio propagation
environment.

(a) LoS, noiseless. (b) LoS, noisy.
(c) Real scenario,
noiseless.

(d) Real scenario,
noisy.

Figure 1.2: An example of holographic measurements obtained via ray-tracing simulation.

1.3.2. LIS and Machine Learning for Sensing

Let us consider an industrial scenario where a robot is supposed to follow a fixed route,
and assume that, due to arbitrary reasons, it might deviate from the predefined route and
follow an alternative (undesired) trajectory. Hence, our goal is, based on the sensing signal
transmitted by the target device, being able to detect whether the robot is following the
correct route or not. In order to perform the anomalous route detection, let us assume that a
LIS (i.e., a large array of closely spaced antennas), is placed in the scenario. Therefore, the
sensing problem reduces to determine, from the received signal at each of the LIS elements,
if the transmission has been made from a point at the desired route or from anomalous
ones. Due to the fact that, in general, acquiring an accurate CSI is a non-trivial task, Let us
resort on the received signal amplitude (equivalently, the received power), which may lead
to a simpler system implementation. To understand the necessity of large arrays and ML
techniques to tackle this problem, let consider the following preliminary example: Assume
that we have two points, p1 and p2, belonging to the desired and the anomalous route,
respectively. Then, the received complex signal vector at the array of M antennas from p1

and p2 is given by

yk = xkhk + nk , k = 1, 2, (1.9)

where xk is the transmitted signal, hk is the complex channel coefficients and nk ∼ CNM(0,σ2I)
represents the noise vector. To verify that p1 and p2 are actually points belonging to different
trajectories, we could try to perform an hypothesis testing based on the Euclidean distance
between the received signal amplitudes, i.e.,

1
M
‖|y1| − |y2|‖2 ≈

1
M

M∑
i=1

|y1,i |2 + |y2,i |2 − 2Re{|y1,i ||y2,i |}, (1.10)
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with yk ,i denoting the elements of yk . If we consider that M is sufficiently large, then the law
of large numbers holds and (1.10) is rewritten as

1
M
‖|y1| − |y2|‖2 =

1
M

M∑
i=1

[
|h1,i |2 + |h2,i |2

]
+ 2σ2 − 2

M2

M∑
i=1

|y1,i |
M∑
i=1

|y2,i |. (1.11)

In (1.11), the first term is the sum of the average power of the channels, whilst the second
term represents the equivalent noise, which completely depends on the channel realiza-
tions. If we would perform an hypothesis testing in order to establish a certain threshold
that determines if the two points are in different routes, then the variance of the error term
would determine the probability of failure. Note that, to obtain an optimum estimator, we
would need to know all the possible states of the channels for each path. Moreover, even
in the most simple case, i.e., assuming a pure LoS propagation, we would still be unable to
distinguish if the two points are in different trajectories or at distinct positions of the same
route.
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Figure 1.3: Equivalent noise term variance in terms of M in a LoS scenario for σ2 = 10−6.

The use of a very large number of antennas arises as a possible solution to mitigate the
effect of the noise term. For the sake of illustration, Fig. 1.3 depicts the variance of the
noise term as a function of the number of antenna elements in a pure LoS propagation
environment, showing clearly how the variance tends to zero as the number of antennas
increases.
However, although the use of a large number of elements in the LIS may reduce the noise
variance, in a realistic environment, the complexity of the propagation paths is considerable,
and the theoretical analysis becomes cumbersome and site-dependent. Hence, in order
to gain insight into how the propagation paths between different positions translate into dif-
ferences in the received signals, we have to resort on machine learning algorithms. This,
together with the use of LIS, can provide the necessary information about the propagation
environment in order to perform the anomalous route detection.
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1.3.3. Channel Model for LIS

In order to validate the proposed method, we can carry out an extensive set of simulations
to analyze the performance of the classification algorithm based on holographic images. To
properly obtain the received power values, we make use of a ray-tracing model, so we can
capture the effects of the multipath propagation in the most reliable way. Ray-tracing is a
strategy which leads to provide very accurate results [9,10], although its computational cost
increases exponentially with the maximum allowed number of paths [11].

1.3.4. Received Power and Noise Modeling

The complex electric field Ẽi(t), arriving at the i-th antenna element at sample time t , can be
regarded as the superposition of each path, i.e.,

Ẽi(t) =
Nr∑

n=1

Ẽi ,n(t) =
Nr∑

n=1

Ei ,n(t)ejφi ,n(t), (1.12)

where Nr is the number of paths and Ẽi ,n(t) is the complex electric field at i-th antenna
from n-th path, with amplitude Ei ,n(t) and phase φi ,n(t). From (1.12), and assuming isotropic
antennas, the complex signal at the output of the i-th element is therefore given by

Ṽi(t) =

√
λ2Zi

4πZ0
Ẽi(t) + ni(t), (1.13)

with λ = 8.5cm wavelength, Z0 = 120π the free space impedance, Zi the antenna impedance,
and ni(t) is complex Gaussian noise with zero mean and variance σ2. For simplicity, we
consider Zi = 1∀ i . Thus, the power Wi(t) = |Ṽi |2 is used at each temporal instant t to
generate the holographic image. Finally, in order to test the system performance under
distinct noise conditions, the average SNR, γ, is defined as

γ ,
λ2

4πZ0MTσ2

T∑
t=1

M∑
i=1

|Ẽi(t)|2, (1.14)

where T the number of time steps (positions of the robot) simulated in the ray-tracing soft-
ware2.

2For more details, please refer to [12]
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2. Radio Channel Characteristics & Modeling

As compared to 4G standards, 5G is envisioned for network densification using smaller
cell zones and capacity enhancement by exploiting mMIMO antenna arrays at BSs and
smaller arrays at the mobile UE. mm-Wave spectrum (from 30 GHz to 300 GHz) is a key
ingredient for 5G and B5G wireless systems due to its tremendous amount of raw available
bandwidth. However, an accurate understanding of the performance of radio signals when
they propagate through a radio channel is needed. Therefore modeling of the radio channel
is vital to wireless communications research [13].

2.1. Propagation Principles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Channel models characterize wireless channels and used to analyze performance of sys-
tem in a given scenario. A proper channel model should be able to reproduce the channel
parameters obtained via real-world measurements and provide an acceptable performance
prediction. Since 5G wireless systems are expected to utilize mm-Wave frequency bands,
modeling of mm-Wave channels are in huge need and important. A radio channel is de-
fined as a medium linking a TX to a RX terminal. Due to presence of various objects in
the surrounding environment radio waves may experience reflection, scattering or diffrac-
tion, arriving at the RX with different paths and delays. Thus, the received signal is the sum
of multiple radio waves with different phases and delays. As defined in the 3rd Generation
Partnership Project (3GPP) channel model [14] the transmitted signal is decomposed into
several time and space clusters.
Signal variation is classified as LSF and Small-Scale Fading (SSF) [15]. LSF is considered
as the average channel gain over a long distance (tens to a few hundred wavelength), and is
caused by large terrestrial obstructions between TX and RX. SSF is considered as variation
of signal over a short distance (fractions of wavelength). The standard deviation in propaga-
tion time between MPC is the Root Mean Square (RMS) delay, and the standard deviation
of angels between MPCs is the RMS angular spread.

2.1.1. Path Loss and Large-Scale Fading Model

A starting point for evaluation of large-scale parameters of wireless channel is the free space
propagation of radio waves. Path loss is the attenuation of radio wave energy as it propa-
gates through the channel and is defined as [16]

PL[dB] = 10 log10
PT

PR
(2.1)

where PT and PR are transmitted and received power, respectively. The received power in
free space depends on propagation distance d and operating wavelength of transmission λ
and is defined as [16]

PR = PT GT GR
( λ

4πd
)2 (2.2)

where GT and GR are the antenna gains at the TX and RX, respectively [9]. By compar-
ing the free space path loss at MHz frequencies up to several GHz, one can simply show
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that moving up to mm-Wave frequencies we must compensate for 20-40 dB received power
loss when compared with current microwave bands. The path loss increment at mm-Wave
bands has been confirmed by several measurement campaigns [17, 18]. However, this is
not the whole story. There is a hidden benefit of propagating at mm-Wave frequencies
which is substantial gain of small directional antennas. In particular, by using array anten-
nas and steerable narrow beams, energy can be concentrated in favorable directions which
can decrease path loss dramatically. Other sources of path loss in mm-Wave frequencies
are atmospheric attenuation of Oxygen and rain attenuation that contribute to reduction of
received signal power but it does not become significant until carrier frequencies exceed 50
GHz. In real environment, there are more obstacles and path loss is more severe than free
space, thus field measurement and path loss modeling is needed. For mm-Wave, several
field measurement have been carried out [19,20].
Shadowing is more significant in higher frequencies due to higher diffraction losses. Shadow
fading has various sources one of which is by environmental objects such as walls, cars,
human, and vegetation that block a MPC, hence path is attenuated. The other form of
shadow fading is caused by UE movement, as it moves along a trajectory and passes by
coverage region of the BS power variations occur. Even the orientation of UE and change of
hold can cause shadowing.

2.1.2. Small-Scale Fading

Small-scale fading is rapid fluctuation of radio signal amplitude over a short distance or time
interval. It is due to the receiving of two or more versions of the transmitted signal with
different delays. Factors such as multi-path propagation, velocity of UE, moving surrounding
objects, and transmission bandwidth of the signal influence small-scale fading. In fact, it
is incorporated in Channel Impulse Response (CIR). The CIR of a narrowband flat fading
channel can be written as [16]

h(t , τ ) = C + g(t , τ ) (2.3)

where C is a complex and deterministic component, corresponding to Line-of-Sight (LOS)
link, and g(t , τ ) is typically a complex zero mean Gaussian random variable whose envelope
has a Rayleigh distribution and τ corresponds to the excess delay. Nonetheless, if LOS
component is available, the amplitude will have the Ricean distribution. By increasing the
channel bandwidth, due to delays of paths, RX can have more resolvable path, thereby the
CIR will change to a Tapped Delay Line (TDL) model. At mm-Wave frequencies, objects
that counting as scattering objects at microwave frequencies will become reflectors due to
the fact that reflections mostly occurs on objects that are comparably much larger than the
operating wavelength, thus multipath delay spread could be significantly affected by the
structure and composition of the environment [17]. Small scale fading was not considered
correlated in majority of literature on mMIMO, which in turn hinder reliable investigation of
millimeter-Wave (mm-Wave) mMIMO channel. Recently, it has gained a lot of attention in
wireless community [21] and effect of that has been investigated.
Doppler effect at mm-Wave bands is magnified due to higher frequencies. However, it is
expected that by utilizing directional antennas and wider bandwidth, this effect can be over-
come. Highly directional antennas can reduce frequency selectivity generated by interfer-
ence between MPCs. Orthogonal Frequency Division Mutiplixing (OFDM) in wideband sys-
tems inherently experience more frequency selectivity. This problem can be mitigated with
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highly directive antennas [9].

2.2. System Modeling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Measurement results are turned into channel models through different methods and they
could be classified into different categories; one classification method is to divide models
into analytical and physical [22]. The analytical models do not explicitly take the wave prop-
agation properties into consideration. Channel coefficients with a specific statistical distribu-
tion characterize the wave propagation in a scattering environment. The Kronecker channel
model is an example of analytical model. On the other hand, physical models characterize
the channel based on the fundamental laws of electromagnetic wave propagation. Wave
propagation parameters such as complex amplitude and MPC delay are explicitly modeled.
3GPP channel model is an example of physical models. Authors in [23] provide a detailed
review of some existing MIMO channel models. In this study channel models are catego-
rized in three distinct groups, namely, deterministic model, stochastic models, and hybrid
models. We divide the channel models to analytical and physical and then subdivide each
one to different categories.

2.2.1. Modeling Principles

Physical MIMO channel models can be subdivided into three distinct categories: determinis-
tic models, geometrically based stochastic models, and non-geometrical stochastic models
The first category is the deterministic or measurement based models. Channel models
are designed based on field measurements. Ray-tracing is a well known model which uses
geometrical and electrical properties of environment and information of antennas such as
radiation pattern, polarization, and carrier frequency to determine the channel impulse re-
sponse. To be more specific, the channel simulator models the path loss experienced by
the multi-path components using the free-space path loss model with power inversely pro-
portional to the square of the distance. The reflections from obstacles, i.e., the walls, are
modeled such that the reflection coefficients are based on Fresnel’s equations. The chan-
nel for each link is then calculated using the ray-traced paths with the path loss, reflection
losses, and antenna gain accounted for in the channel [5]. This modeling approach is very
accurate compared to other models, however, high computational time and cost, calibration
difficulty are its drawbacks.
The second category is the geometrically based stochastic models. In order to be more
realistic, the electromagnetic wave propagation laws and geometry of the propagation en-
vironment is applied to these models. Parameters such as AoA of the transmitted signal,
Azimuth angle-of-Departure (AoD) of received signal, and the azimuth spread characterize
the channel model. Moreover, the effect of objects on the propagation channel is modeled
by scatterer distributions. The stochastic distribution of scatterers aids the model to be more
realistic.
The one-ring model is a used for macro-cellular networks and lies within stochastic geo-
metrically based models [24]. The TX is assumed to be above all scatterers and the RX is
surrounded by local scatterers. Based on the environment, various scatterer distributions
are considered and signals aggregate at the RX from different directions. No LoS path is
considered between the TX and the RX, and single bounce scattering with equal power of
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scattered rays is considered. From the model, correlation matrices between antenna ele-
ments could be obtained, nonetheless, it cannot completely describe all observed channel
effects of MIMO channel.
The Quasi Deterministic (QD) model is a combination of deterministic and stochastic mod-
els. To be more precise, given an environment and TX and RX positions, a basis for channel-
Deterministic rays (D-rays)- could be computed through ray-tracing. In fact, D-rays are the
strongest propagation paths. The delivered signal power over each of the rays is calcu-
lated by considering theoretical formulas. Then, based on these rays, MPCs are randomly
generated by the QD model. The generation of a channel based on QD model has been
elaborated in [25] and results are validated with measurement data.
The third category is the non-geometrical stochastic models. This model determines the
MIMO channel parameters (AoD, AoA, delay, etc.) in a completely stochastic manner by
assigning a probability distribution function to each parameter and does not take into ac-
count the geometry of the environment. The extended Saleh-Valenzuela model has been
proposed in [26]. The model is based on the assumption that angular parameters (AoA,
AoD) statistics are identical and independent which allow the spatial clusters to be charac-
terized in terms of their mean cluster angle and angular spread. Also, the mean delay of
each cluster is modeled by a Poisson process.
Analytical models can be split into propagation based models and correlation based models.
The propagation based models describe the channel matrix via propagation parameters.
The maximum entropy model [27] and the finite scatter models [28] belong to this category.
The correlation based models describe the MIMO channel model in a stochastic manner
and in terms of correlation between the channel matrix entries. The Kronecker [29] and We-
ichselberger [30] models are examples of this category. In this category one of the simplest
models which is widely used in the literature is the Independent and i.i.d MIMO channel.
It assumes a random channel matrix with zero mean and i.i.d elements. Since it assumes
transmission is occurred in a rich scattering area with enough antenna spacing, the chan-
nel fade is statically independent. Whereas, in reality the environment has less scatterers
and the small spacing implies correlation between channel matrix entries. Therefore, the
i.i.d model is used in general for mathematical analysis and to give an upper bound of the
performance.
The Kronecker model was used for capacity analysis initially. It assumes that spatial corre-
lation at TX and RX is independent which is equivalent to restricting the channel model to
a rich scattering environment. Also, the channel covariance matrix is defined as Kronecker
product of covariance matrix at each end of the links. The drawback of Kronecker model is
that it overlooks the interdependence of both ends of the MIMO channel; in other words it is
not able to address the couplings between transmit and receive side of the MIMO channel.
Measurements showed that mm-Wave MIMO channel is a non-Kronecker, the deviation from
Kronecker model was estimated for several scenarios [30].

2.2.2. Channel Models

We consider a mMIMO mm-Wave cellular system where the BS has M antenna elements
and each UE has N antenna elements. For simplicity, we assume that the BS and UEs
are equipped with horizontal Uniform Linear Array (ULA), with an extension to other array
geometries is straight forward. The scattering environment is depicted in Figure 2.1. The
narrowband time varying channel gain (time development) between the BS and the UE can
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be represented in terms of MPCs as [31]:

H(t) =
1√
L

K∑
k=1

L∑
l=1

gk ,l(t) aBS(θk ,l) aH
UE (φk ,l). (2.4)

Figure 2.1: Scattering environment.

There are K clusters, and in each cluster there are L MPCs. The complex small-scale fading
coefficient on the l th sub-path of the k th cluster is gk ,l(t), and aBS ∈ CM×1 and aUE ∈ CN×1

are the vector responses for the BS and UE antenna arrays. The AoA and AoD are θk ,l and
φk ,l . For each cluster there is a cluster angular spread of arrival σk ,BS and departure σk ,UE,
such that |θk ,l − θk ,l ′| ≤ σk ,BS and |φk ,l − φk ,l ′ | ≤ σk ,UE. For ULA, the response vector is

a(θ) = [1, ej 2π
λ

s sin(θ), ... , ej 2π
λ

(Nr−1)s sin(θ)]T , (2.5)

where λ is the carrier wavelength, s is the antenna spacing and Nr the number of antenna
elements. The UE moves in a direction β relative to the orientation of its antenna array. The
small scale fading coefficient can then be modeled as [31]:

gk ,l(t) = ḡk ,l e2πjtfD cos(ωk ,l ), ḡk ,l ∼ CN(0, γk10−α/10), (2.6)

where fD is the maximum Doppler shift, ωk ,l = β − φk ,l is the angle of arrival of the subpath
relative to the direction of motion, α is the omnidirectional path loss and γk is the fraction
of power in the cluster. The relation between ωk ,l and the angle of arrival depends on the
orientation of the mobile terminal relative to motion.
The channel model between the BS and the UE for a given subcarrier n can also be repre-
sented as [32] by taking into account the elevation angles:

H(n) =
1√

L
∑

l Kl

L∑
l=1

Kl∑
k=1

gk ,le−2πbτk ,l/T ar (θk ,l ,ϕk ,l) aH
t (φk ,l ,ψk ,l). (2.7)

There are K clusters, and in each cluster there are L MPCs. Superscripts r and t denote
receiver and transmitter respectively, ar ∈ CM×1 and at ∈ CN×1 are the vector responses
for the receiver and transmitter antenna arrays. The path loss on the l th sub-path of the
k th cluster is gk ,l and the corresponding propagation delay is τk ,l . T is the OFDM symbol
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duration. The AoA and EoA at the receiver are θk ,l and ϕk ,l . The AoD and Elevation angle-
of-Departure (EoD) at the transmitter are φk ,l and ψk ,l . Similarly, for all angular parameters
in each cluster, angular spread is defined such that |θk ,l − θk ,l ′| ≤ σk ,BS, |ϕk ,l − ϕk ,l ′| ≤ δk ,BS,
|φk ,l − φk ,l ′ | ≤ σk ,UE, and |ψk ,l − ψk ,l ′ | ≤ δk ,UE. The channel matrix of UE i at the BS using
subcarrier n is denoted as

Hi(n) ∈ CM×N (2.8)

Where M is number of antenna at BS and N is number of antenna at UE. In order to
describe the spatial behavior of the two ends of a MIMO channel, a full correlation matrix
that specifies the MN×MN mutual correlation values between all channel matrix elements is
required, given as R = EH{vec(H)vec(H)H}. A drawback of the full covariance matrix is that
it requires significant pilot transmissions to be estimated. In addition, direct interpretation of
the elements of R with respect to the physical propagation of the channel is difficult.
The raw instantaneous covariance matrix of UE i at the BS without considering UE’s beam-
former (but with beamformer at the other end) is defined as

Ri =
∑

n Hi(n)HH
i (n)

B
(2.9)

where B is the number of subcarriers. It should be noted that this representation of covari-
ance matrix only applies to the Kronecker channel model.
A mm-Wave stochastic MPC channel model, gives rise to a non-Kronecker correlation struc-
ture, because the two ends of the channel cannot be considered independent. Hence, the
one-sided correlation matrices are affected both by the statistical signal properties and the
transmission covariance applied at the other link end.
The BS-side channel covariance matrix is defined as

RBS = RBS(QUE ) ≡ EH{HQUEHH} (2.10)

while the UE side covariance is

RUE = RUE (QBS) ≡ EH{HHQBSH} . (2.11)

The covariance matrix at one end of a link depends on the transmission covariance at the
other end. The matrices QBS and QUE represent the spatial signal covariance matrices
at the BS-side and UE-side, respectively. For Kronecker channel models, the full channel
covariance is a tensor product R = RBS (IN) ⊗ RUE (IM), where IP is the identity matrix of
size P. This further implies that the angular spectrum at the BS, i.e. the eigenvectors of
RBS, and the relative values of the eigenvalues, does not change when QUE is modified, and
vice versa. The only dependence of BS covariance on QUE is that the total received power
changes, the eigenstructure is otherwise the same [30].
The mm-Wave MPCs-channel model is a non-Kronecker model. A general channel matrix
(One sample of the channel matrix is considered, i.e., the time development is not consid-
ered in this model.) can be modeled following Weichselberger & et. al. [30] as:

H = UBS
(
Λ̃� H̃

)
UH

UE , (2.12)

where � is the element-wise product of two matrices, H̃ is a random matrix with i.i.d. zero-
mean complex entries with unit variance, Λ̃ is the element-wise square root of the coupling
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matrix given by [Λ]m,n = EH
{
|uH

BS,mHuBS,n|2
}

. The coupling matrix specifies the average
amount of energy that is coupled from the mth Eigenvector of the BS side to the nth Eigen-
vector of the UE side, UBS = [uBS,1, ... , uBS,M ] and UUE = [uUE ,1, ... , uUE ,N ] are the BS-side
and UE-side spatial Eigenbases.

2.2.3. Base Station Deployment Models and Cell Layouts

Due to usage of high frequencies in mm-Wave bands, 5G New Radio (NR) deployments
require dense network topologies which results in small-cell deployment scenarios. Each
scenario has focused on specific properties and requirements related to the physical limits of
mm-Wave communication and possible use cases. Urban Macro (UMa) is deployed for large
coverage, and Urban Micro (UMi) is integrated with UMa to form heterogeneous networks
[33]. For large areas, a huge number of mm-Wave small cells provide almost full coverage,
however, high cooperation among small-cells and beamforming is required. UMi covers
large indoor areas (also multiple open spaces and rooms is covered), because the UMa is
unable to provide an in-depth coverage for indoor users.
As an example, for dense urban scenarios two options are adopted with one sector deploy-
ment for micro cells [34]. First option is that each BS antenna element has an omnidirec-
tional pattern in horizontal domain and a directional antenna element (with 5dBi gain and
Half Power Beam Width (HPBW)=40 ◦) in vertical domain. Second option is that to use di-
rectional antenna elements in horizontal and vertical domain (with 8dBi gain HPBW=65 ◦).
The simplified radiation pattern of a single antenna element in horizontal space is depicted
in Figure 2.2.
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Figure 2.2: Simplified radiation pattern of a single antenna element.

2.2.4. Antenna Arrays and Architectures

Thanks to short wavelength of mm-Wave frequencies, using large scale antenna arrays is
possible. ULA antenna is the simplest form of array antenna and is an ensemble of N
antenna elements spacing equally on a straight line. The most common element is a dipole
antenna. Array antennas are used to address the SNR improvement problem and response
(gain) enhancement in particular directions. Thus, by using steerable beams in ULAs the
array can accept signals from a particular direction and reject signals from other directions.
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Consider and example of a ULA (with element spacing distance of s/λ) and a single prop-
agation path. Let θ be the angle of incidence for the signal with respect to the boresight
direction (AoA for the RX and AoD for the TX). The array response for a ULA is defined
as (2.5). If we assume a single propagation path between TX and RX, with the complex
gain of α, the channel would be H = αa(θr)a(φt)H. Since there is only one path, the channel
rank is one and the channel is sparse. Using definition of narrow-band MIMO system with
beamforming as:

y [n] = wHfs[n] + wv[n] (2.13)

Where, y [n] is the vector of sampled observation, w is the receive beamforming (combining)
vector, f is the transmitting beamformer, s[n] is the symbol stream and v is the noise vector.
The optimum beamformer for this channel is f = 1

Nt
a(φt) where the combining vector is w =

a(θr). Thus, the entries are just phase shifts and in case of analog beamformers, with a an
optimization problem the best phase shift for each antenna will be chosen. Transmit and
receive beamformers design is an important research area and has been studied in [35].
Based on 3GPP standards [14], for BS antenna Uniform Planer Array (UPA) is chosen. An-
tenna comprises of panels which are spaced with a specific distance in the horizontal and
vertical directions. Antenna elements in each panel are spaced in horizontal and vertical
directions with a specific spacing as well. Antenna panels are either single or dual polar-
ized. The antenna radiation pattern of each antenna element is generated according to
Table 2.1 [14, Tab. 4]. Horizontal cut of the radiation power pattern is shown in Figure 2.2,
as well. A′′dB(θ′′,φ′′) is the 3D antenna radiation power pattern as a function of azimuth angle
θ′′ and elevation angle φ′′. Amax is the maximum attenuation power, SLAV is the side-lobe
attenuation in vertical direction, and θ3dB and φ3dB are vertical and horizontal 3 dB beamwidth
of an antenna, respectively. Spatial multiplexing is one of the array antenna benefits and
concisely it allows transmission of multiple symbols using the same radio resources (i.e. at
the same time on the same carrier, with the same total power) as if only one symbol were
transmitted [36]. It should be noted that selecting an array structure is a challenging prob-

Parameter Value

Vertical cut of the radiation
power pattern (dB)

A′′dB(θ′′,φ′′ = 0◦) = −min
{

12
(
θ′′−90◦
θ3dB

)2, SLAV

}
with

θ3dB = 65◦, SLAV = 30dB and θ′′ ∈ [0◦, 180◦]

Horizontal cut of the radiation
power pattern (dB)

A′′dB(θ′′ = 90◦,φ′′) = −min
{

12
(
φ′′

φ3dB

)2, Amax

}
with

φ3dB = 65◦, Amax = 30dB and φ′′ ∈ [−180◦, 180◦]

3D radiation power pattern (dB) A′′dB(θ′′,φ′′) = −min{−(A′′dB(θ′′,φ′′ = 0◦) + A′′dB(θ′′ =
90◦,φ′′)), Amax}

Maximum directional gain of an
antenna element 8 dBi

Table 2.1: Radiation power pattern of a single antenna element

lem, since some areas may need narrow beams in the azimuth and some may need narrow
beams in the elevation.
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In [37], Uniform Circular Array (UCA) is proposed for BSs. It claims higher directivity and
array gain compared to other array architectures, as circular antenna array occupies a larger
area with the same number of antenna elements. The other advantage of exploiting circular
arrays for outdoor deployments is the 2π coverage area due to axial symmetry. This results in
non-fluctuating gain of antenna’s main lobe pattern. Thus, the antenna array is not affected
by the angle variations caused by moving objects or array vibration.

2.3. mm-Wave and Microwave Propagation Differences
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Radio waves have different characteristics at different frequency bands, thus we can antici-
pate different channel behavior at mm-Wave bands as compared to sub 6 GHz bands. The
main differences are high path loss, penetration and reflection properties of common materi-
als at high frequencies. For instance, due to comparable dimension of operating wavelength
and foliage, scattering of the leaves increases whereas penetration through them decreases.
In this section key differences of mm-Wave and microwave bands are explained.

2.3.1. Attenuation and Blockage

Increased path loss in mm-Waves is not only due to high frequencies, but also weather
condition has impact on attenuation due to dimension order of rain droplets, hail stones and
snowflakes and mm-Wave wavelength. mm-Wave systems are more sensitive to blockage
by objects than microwaves. In [38], the authors have studied penetration loss and reflectivity
at 28 GHz of different materials. Measurements show high reflectivity and penetration loss
of outdoor building material and bricks in pillar. For instance, tinted glass had a penetration
loss of 40.1 dB loss whereas, a clear non-tinted glass showed a 3.9 dB penetration loss.
Thus, for indoor-to-outdoor penetration loss there is a distinct difference from microwave
systems, however, indoor-to-indoor or outdoor-to-outdoor attenuation is less severe due to
outdoor reflectivity and low attenuation of indoor materials.

2.3.2. Channel Sparsity

It is commonly believed that mm-Wave channels are sparse in angular and delay domain
which means the number of dominant paths is limited. Based on the existing measurements
in mm-Wave bands majority of angular or delay bins do not include MPCs with significant
energy in contrast to microwave bands [39]. Due to sparse structure of MPCs, compressed
sensing methods are able to effectively estimate the CSI with few measurements and re-
duced complexity [35].

2.3.3. Large Bandwidth and Large Antenna Arrays

Multi Gigabit-per-second (Gbps) data rates to UE have been offered by 5G NR that will use
mm-Wave frequencies. Studies show that a 1 GHz wide channel at 28 GHz could offer
several Gbps of data rate at the UE [40]. Also, there are large portion of raw spectrum
at mm-Wave bands. Small wavelengths make it feasible to use large array of antennas in
form of ULA and UPA. The authors in [41], has proposed use of lens antenna arrays and
compared its performance to UPAs. Numerical results showed a significant reduction of
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signal processing complexity and Radio Frequency (RF) chain cost with no performance
degradation.

2.3.4. Spatial Consistency and Stationary Regions

Spatial consistency represents the smooth variations for the stationary channels when a
user moves or when multiple users are located in area over 5-10 m [42]. In other words,
channel characteristics for closely located UEs are highly correlated. Spatial consistency
covers a range of aspects such as small and large scale parameters, AoAs, and AoDs.
Thus, 5G systems require a channel modeling whose parameters continuously evolve. One
use case of spatial consistency could be beam tracking approaches when a UE moves along
a trajectory. In [43] estimation of large-scale parameters from UE-specific channel covari-
ance matrices measured at BSs and their spatial consistency in mm-Wave environment are
investigated.
The small-scale spatial auto correlation coefficient of the received signal amplitude de-
creases rapidly over distance, and the correlation of individual MPC amplitude in a wideband
(1 GHz) transmission is only 1-33 wavelengths depending on antenna pointing angle with
respect to a scattering object, e.g. at 73 GHz, the correlation distance is less than 15 cm.
The large-scale parameters have a much longer correlational distance of 12-15 m, since
the scattering environment does not change dramatically in a local area [13]. Another im-
portant part of channel modeling is channel stationarity. Measurements have indicated that
spatial stationary regions at microwave bands are much larger than mm-Wave bands [44].
It should be noted that orientation of directional antennas can impact correlation distances.
Also, there has observed a sharp drop in received power in corners where a UE transitioned
from LOS region to Non Line of Sight (NLoS). Therefore, stationary regions should carefully
took into consideration for mm-Wave channel modeling.
In order to investigate spatial consistency of mm-Wave channel model based on the covari-
ance matrix some of similarity measures need to be explained.

1. Chordal distance: The chordal distance is a widely used distance metric between sub-
spaces. Given the covariance matrices of two UEs (locations) i and j , at the BS the
chordal distance is defined as:

dChord (i , j) = ‖R2
i − R2

j ‖F
(2.14)

Looking into the definition, we expect that the chordal distance shrinks when two users’
distance decreases. Actually, if the chordal distance between two users is less than a
predefined threshold, they are considered spatially correlated [42].

2. CMD: The similarity measure based on CMD is a normalized value and is defined
between covariance matrices of two UEs (locations) i and j as:

dCMD(i , j) = 1− |Tr (RiRj)|
‖Ri‖F‖Rj‖F

(2.15)

dCMD = 1 in the case of orthogonal covariance matrices, and dCMD = 0 when covariance
matrices are collinear. Thus, for small values of dCMD UEs are considered spatially
correlated.
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3. Euclidean distance: The Euclidean distance between two UEs (locations) i and j is
simply defined as:

dEuc(i , j) = ‖Ri − Rj‖F (2.16)

As already mentioned, mm-Wave stochastic model gives rise to non-Kronecker correlation
structure and subsequently, leads to two kinds of problem related to spatial consistency:
First, the covariance matrix measured by a BS from uplink transmissions depends on the UE
beamformer used for transmission. Second, the covariance measured by the BS depends
on the direction of movement of the UE. We show that these problems can be mitigated by
applying coordinated uplink precoding, such that geometrically consistent radio features can
be extracted from covariance matrices estimated at the BS.

2.3.5. Multi-path Components and their Clustering

A major difference of mm-Wave to microwave frequencies is the small number of MPCs. The
most of mm-Wave campaigns are inherently non-coherent since the narrow beamwidth of
directional antennas induces limited angular resolution. Thus, multiple MPCs may appear
as one MPC in the view point of an antenna. So, finding the precise number of MPCs in
an environment is not trivial. Like in microwave bands, MPCs at mm-Wave bands are likely
to occur in clusters. A cluster comprises of rays which come from the same scatterer with
similar properties and is typically described by statistical large scale parameters. A scatter-
ing environment is depicted in Figure 2.1. One difference that prevents microwave bands
channel model to be utilized for mm-Wave bands is the fact that, number of clusters is con-
stant in microwave bands, while for the mm-Wave bands it may not be a proper assumption.
Generally, the number of clusters is assumed to be random and small. It can be modeled
by the Poisson distribution [45]. In the 3GPP channel model [14], a cluster is described by
a joint delay and mean angles, so that the arrival and departure angle of a group of MPCs
must be unique and centered around the average propagation delay. The Geometry-based
Stochastic Channel Model (GSCM) is a modeling method in which multipath parameters are
determined by a probability density function. In this model the ray-tracing principle is used
to compute the CIR.

2.4. 3GPP Model for 0.5–100 GHz Specifications and Other Standards
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to fulfil the 5G networks requirements, future wireless communication will span a fre-
quency range up to 100 GHz where spectrum availability will give access to wide bandwidth
channels (up to 2 GHz). The lack of accurate radio propagation models for communica-
tion above 6 GHz and their indispensability for 5G technologies development has motivated
the study of high frequency channels by the 3GPP and other organizations. In [14], 3GPP
highlights the requirements for the new channel model and provides a standard for high fre-
quency communications. Taking into account the sensitivity of the model to the scale of the
environment, it investigates four scenarios of interest:

• UMi (Street canyon, open area) modeling scenarios such as a cities or station squares
where BSs are below the building height.
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• UMa representing rural areas as UMi, but with BSs mounted above rooftop levels of
surrounding buildings.

• Indoor (InH) comprising indoor scenarios such as open and closed offices, or shopping
malls.

• Rural Macro (RMa) accounting for large and flat rural propagation environments.

For all of the above scenarios, 3GPP provides environment specific path loss models under
LoS and NLoS propagation, expression for the probability of having LoS/NLoS , Outdoor
to Indoor (O2I) losses and fast fading models. In order to cater for advanced simulations,
additional aspects of high frequency communication are considered, such as: the oxygen
absorption in the 53-67 GHz interval, angular and delay spread arising with large antennas
arrays or large bandwidth, spatially consistent mobility models to investigate scenarios as
vehicular communication, blockage models accounting for human and vehicular blockage,
ground reflection model and time-varying Doppler shift effect.

2.5. Examples of Available Channels Models
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In parallel to 3GPP, other organizations are conducting 5G channel measurements and
modeling high frequency channels, among them:

• METIS identified the 5G requirements, performed channel measurements in the 2-60
GHz range and proposed a map-based model, stochastic model and hybrid model [46].

• COST2100 developed a geometry-based stochastic channel model that captures the
time-, frequency- and space-dependent characteristic of MIMO channels [47].

• NYU WIRELESexplored 28/38/60/73 GHz bands for both outdoor and indoor channels
and proposed modifications or extensions for LoS/NLoS/blockage modeling, wideband
power delay profiles and path loss models [9,48,49].

• MiWEBA devised a quasi-deterministic channel model addressing shadowing, spatial
consistency, environment dynamics, spherical wave modelling, dual mobility Doppler
model, ratio between diffuse and specular reflections and polarization [50].

• Fraunhofer Heinrich Hertz Institute developed QuaDRiGa to enable the modeling of
MIMO radio channels for specific network configurations, such as indoor, satellite or
heterogeneous configurations [51].
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3. QuadRiGa Channel Model

QuaDRiGa is used to simulate the radio environment and obtain the CSI of the wireless links
in 0.5-100 GHz [51]. The QuaDRiGa model can be categorized as a "statistical ray-tracing
model". The term statistical is used due to the fact that scatterers are randomly distributed
in the environment. All essential parts of QuaDRiGa are inline with 3GPP-3D model yet a
few differences are in the implementation that have no effect on the results obtained on the
model. The model contains all essential parts of 3GPP-3D model and is a good option for
evaluating 3GPP standardization proposals.
In the new version of QuaDRiGa (v.2) spatial consistency has been added to the channel
model in order to accurately assess the performance of mMIMO and multi-cell transmissions.
In order to model spatially consistent correlations, the position of scattering clusters must be
spatially consistent as well. 3GPP has introduced a modeling approach where the whole set
of random variables that determine the location of scattering clusters are spatially correlated
[14]. However, this method suffers from the requirement of large amount of memory. In
order to reduce the memory requirement, the Sum of the Sinusoids (SOS) method has
adopted in QuaDRiGa to model the distance dependent correlation of SSF parameters [52].
In this method relatively small number of sinusoids coefficients are used to generate spatially
correlated parameters. Accordingly, the main advantage of this method is simulation speed
improvement and low memory requirement.
Here, our focus is on implementing mm-Wave channel model using the QuaDRiGa simulator.
A simple scattering environment is depicted in Figure 2.1 where AoD (the angle between
transmitter; which is the BS; and scattering cluster) and AoA (the angle between the UE
and the scattering cluster) and total path length and resulting delay of path is derived by the
model. The model parameters for the frequency range of 450 MHz - 100 GHz with up to 1
GHz bandwidth for different scenarios are defined according to 3GPP 38.901. Each cluster
is assumed to have 20 sub-paths (i.e. a single reflection from the scatterer). The sub-paths
are used to emulate fading for MPCs. Sub-paths of a cluster are modeled with the same
power and delay profiles, this is based on the assumption that the sub-paths from closely
clustered paths that originate from the same cluster are unresolvable in the delay domain
and have small delay spread [51]. The AoA, AoD, EoA and EoD are different for each sub-
path. The coefficients of 20 sub-paths are summed up to create the channel coefficient.
A segment is defined as an interval that large scale fading parameters are not changing
rapidly. Each segment is several meters long. Inside the segment, the drifting concept [51]
is used to traverse the segment and update the delay, angles and phases of MPCs.
Spatial consistency should be seen in both large scale and small scale fading. The spa-
tial consistency ensures that path delays, angles and power change smoothly with space/-
time. Typically, large scale parameter are relatively constant over several meters and do not
change rapidly. For example, closely located UEs will experience similar large scale fading
parameters such as Dealy Spread (DS)s and angular spreads. The changing rate of large
scale parameters can be adjusted through "lambda" parameters in the simulator. The small
scale fading is affected by the position of scattering clusters. For closely spaced locations,
UEs will have both similar DSs and see similar scattering clusters. In fact, QuaDRiGa gen-
erates a random process that correlates all random variables used in building the scattering
clusters. A decorrelation distance has been defined. It is the distance where for two UEs the
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correlation of the same variable is below e−1 = 0.36 and controlled by "SC lambda". With
"SC lambda=0" the spatial consistency will be disabled. Spatial consistency is evaluated in
the literature by investigating the following metrics:

1. The path power along the track for a moving UEs or the powers for nearby UEs. Spatial
consistency means that the path powers do not change suddenly, both for LOS and
NLOSs components.

2. AoA, AoD, EoA and EoD and the angular spreads along the track.

3. The delays of LOS/NLOS MPCs and the delay spread along the track.

Moreover, we need to emphasize that AoA, AoD, etc... can not be obtained directly from
CSI measurement, and it is not recommended to use complex signal processing techniques
to find the parameters of MPCs, in this regard, we investigate spatial consistency based on
the covariance matrices. The covariance matrix is assumed to be dependent on the user
mobility and have a slow variation over time.

3.1. Layout and System Specifications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to evaluate spatial consistency feature, QuaDRiGa version 2 is used and the (up-
/downlink) MIMO channel based the 3GPP 38.901 UMaNLoS model has generated. The
system is operating at 28 GHZ with 200 MHz bandwidth, and 32 BS antennas and 8 UE
antennas both with vertical polarization which composing a ULA with omnidirectional ele-
ment is considered. The orientation of antennas at UE is assumed to be fixed or random.
The decorrelation distance of 25 m is chosen (i.e. SC lambda=25). The number of MPCs is
adjusted to be 20, 10, and 5 and each MPC is consist of 20 sub-paths. Simulation settings
are detailed in Table 3.1.

Parameter Setting
Simulation Scenario 3GPP 38.901 UMaNLoS
Carrier Frequency 28 GHz
Bandwidth 200 MHz
BS Antennas ULA consisting of 32 vertically polarized elements
UE Antennas ULA consisting of 8 vertically polarized elements
UE Antennas Orientation Fixed/ Random
Number of MPCs 5, 10, 20
Sub-paths 20
Decorrelation Distance 25m

Table 3.1: Simulation settings

3.2. Definition of the Inputs and Outputs and Channel Parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Several scenarios are considered where a UE/UEs are moving, on a straight line, circles
or randomly. In scenario I, a UE moving in a straight line getting farther from a BS on a
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track of 20 meters length is considered, see Figure 3.1. The UE position during movement
on a straight line with a random direction is starting from [0, 50] m at xy-coordinates and is
marked by red triangles. The BS is at xy-coordinates of [0, 0] m. The BS is at a height of 25
m and UE at 1.5 m. We assume transmission from the BS to the UE such that AoA refers to
the angles observed at the UE terminal.

Figure 3.1: A UE moving in a straight line.

Power and delay profiles of the MPCs of the UE along the mobility track are shown in Figure
3.2a. The top figure shows the power profile and the bottom figure shows the delay profile
for different clusters as a function of the track samples. The smooth change of power and
delay profiles for each cluster are clearly observed. AoD and EoD of MPCs of the UE are
depicted in Figure 3.2b. All values are in degree and changing smoothly in each cluster. AoA
and EoA of MPCs of the UE are shown in Figure 3.3 for clearness of the figure, the MPCs
of few clusters are shown. Based on the power, delay, AoA, EoA, AoD, and EoD profiles of
MPCs in the Figures 3.2 and 3.3, the spatial consistency is observed as expected.

(a) Top: Power profile of MPCs of the UE. Bottom:
Delay profile of MPCs of the UE.

(b) Top: AoD of MPCs of the UE. Bottom: EoD of
MPCs of the UE.

Figure 3.2: MPC characteristics of scenario I as a function of track samples.
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Figure 3.3: Top: AoA profile of MPCs of the UE. Bottom: EoA profile of MPCs of the UE.
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4. Ray-Tracing Model

Another approach to model the mm-Wave channel characteristics is to use a ray-tracing
channel model. The ray-tracing technique has employed Geometrical Optics (GO) and the
Uniform Theory of Diffraction (UTD) [23]. The asymptotic high frequency techniques from
GO is often used to analyze wireless propagation. GO is an approximate field measurement
method for estimating a high frequency electromagnetic field and when the wavelength of
the signal is comparably smaller than the dimension of obstacles in the environment, using
the concept of ray propagation is feasible. The GO describes the direct propagation along
a straight line path between the TX and the RX, as well as the propagation by reflection
from, and the transmission through the surfaces of obstacles that comprise the environment
in terms of reflected and transmitted rays. On the other hand, the UTD describes the propa-
gation by diffraction from the edges between two surfaces in terms of diffracted rays [53].
Not only ray-tracing model fills up the gap in stochastic models in preserving spatial con-
sistency , but also provides good agreement with field measurement results as discussed
in [54]. By virtue of availability of 3D geometrical information [55] various urban scenar-
ios have been modeled based on ray-tracing models. The 3D structure of downtown areas
are modeled and then 3D ray-tracing simulations at a given frequency (e.g. 28 GHz) are
performed.
At first, the pathloss propagation of ray-tracing model is compared to a reference model (e.g.
3GPP standardization group). Then, the channel model provides crucial channel parameters
such as shadowing as well as delay, angle, and elevation spreads. In [56], authors have
provided a dual slope pathloss model for downtown Ottawa. Dual slope model corresponds
to a model which provides two different pathloss formulas and shadow fadings values for
different range distances. The dual slope model fits well with measurement campaigns
which means lower root mean square error between simulation results and model output.
sectionMathematical Model In [4], a ray-tracing mm-Wave cellular channel model was cre-
ated following the principles of [55]. The channel simulator models the path loss experienced
by the multi-path components using the free-space path loss model with power inversely pro-
portional to the square of the distance. The reflections from obstacles, i.e. the walls, are
modeled such that the reflection coefficients are based on Fresnel’s equations. The typical
value for the wall relative permittivity is between 4 and 6. The channel for each link is then
calculated using the ray-traced paths with the path loss, reflection losses and antenna gain
accounted for in the channel. The multipath gain β(l)

b,k is computed as:

β(l)
b,k = eiψl

√√√√G0ρd−2
l g1(θl)g2(φl)

R∏
i=1

|r (i)
l |

2
, (4.1)

where G0 = 10−6.14 is the omnidirectional path gain at a reference distance of 1 m, ρ is the
transmit power, ψl is the phase modeled as a uniform random variable ψl ∼ U (0, 2π), dl

is the propagation distance in meters, g1(θl) and g2(φl) are the antenna gain for an angle
of departure θl at the UE and angle of arrival φl at the BS, respectively, R is the number of
reflections that the l th multipath component undergoes, and r (i)

l is the i th reflection coefficient.
For a LOS path, R = 1 andr (1)

l = 1.
In order to create sub-rays within a cluster, according to the 3GPP standards [14], after the
cluster generation, the following steps needed to be taken. To do so, as an example we need
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to generate arrival and departure angles for both azimuth and elevation. AoA for cluster n
and AoA for ray m in cluster n are defined as φn,AOA and φn,m,AOA respectively. The composite
Power Angular Spectrum (PAS) in azimuth of all clusters is modeled as wrapped Gaussian.
The AoAs are determined by applying the inverse Gaussian function with input parameters
Pn and RMS Azimuth Spread of Arrival angles (ASA) as:

φ
′

n,AOA =
2(ASA/1.4)

√
−ln(Pn/max(Pn))
Cφ

, (4.2)

where PN is the power of cluster n , and Cφ is defined as:

Cφ =

{
CNLOS
φ .1.1035− 0.028K − 0.002K 2 + 0.0001K 3 for LOS,

CNLOS
φ for NLOS,

(4.3)

where K is the Ricean K-factor, CNLOS
φ is defined as a scaling factor related to the total

number of clusters and is given in Table 4.1.

#clusters 4 5 8 10 11 12 14 15 16 19 20
CNLOS
φ 0.779 0.860 1.018 1.090 1.123 1.146 1.190 1.211 1.226 1.273 1.289

Table 4.1: Scaling factors for AoA, AoD generation

In the LOS case, constant Cφalso depends on the Ricean K-factor K in [dB]. Additional
scaling of the angles is required to compensate for the effect of LOS peak addition to the
angle spread. Assign positive or negative sign to the angles by multiplying with a random
variable Xn with uniform distribution to the discrete set of {1,−1}, and add component Yn ∼
N (0, (ASA/7)2) to introduce random variation

φn,AOA = Xnφ
′

n,AOA + Yn + φLOS,AOA, (4.4)

where φLOS,AOA is the LOS direction defined in the network layout description, see Step1c.
In the LOS case, substitute (4.4) by (4.5) to enforce the first cluster to the LOS direction
φLOS,AOA

φn,AOA = (Xnφ
′

n,AOA + Yn)− (X1φ
′

1,AOAY1 − φLOS,AOA), (4.5)

Finally add offset angles αmfrom Table 4.2 to the cluster angles:

φn,m,AOA = φn,AOA + cASAαm, (4.6)

where cASA is the cluster-wise RMSE ASA (cluster ASA). The generation of AoD follows a
procedure similar to AoA as described above.

4.1. Layout and System Specifications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the ray-tracing approach, 3D geographical building models are utilized to model urban
environments. The downtown area of New York City is modeled according to [5]. In our
scenario , 10 BSs, 6 streets and 5000 UEs are considered. The UE locations are randomly
generated on the streets of a Manhattan grid.The simulation parameters are shown in Ta-
ble 4.3. The UE locations are generated on the streets of a Manhattan grid as shown in
Figure 4.1.
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Figure 4.1: Simulated scenario: Streets in a Manhattan grid with 10 BSs labeled by numbers
and sampled UE locations marked by colors.

4.2. Definition of the Inputs and outputs and channel parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A scenario showing the propagation paths for multipath components using the ray-tracing
model is shown in Figure 4.2. A UE location has LOS communication with one BS (BS-LOS)
and a NLoS communication with another BS (BS-NLOS). The SNR observed at BS-LOS
which is at a distance of 43.01 meters is obtained as 38 dB. The SNR at BS-NLoS which is
at a distance of 235.7 meters is calculated as -36.83 dB.

Figure 4.2: A scenario showing the propagation paths and MPCS for a UE location with LOS
and NLOS BSs.

As another example of ray-tracing model, an urban outdoor multi-cell mm-Wave scenario is
considered. Figure 4.3 shows rays from one UE location at [218, 205] xy coordinate to BS 7
in a NLOS scenario in order to have a clear observation of transmitting rays. It is a suitable
scenario to see LOS, NLOS locations and a handful of applications could be considered to
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Figure 4.3: NLOS scenario. Streets in a Manhattan grid with 10 BSs labeled by numbers
and sampled UE location at [218, 205] xy-coordinate.

evaluate. For instance, it can be used for beamformer at street cross sections handover from
a BS to another, for Vehicle to Vehicle (V2V) communications, and positioning.
Figure 4.4 is an illustration of a 3D ray-tracing model. UEs are located in the red street (i.e.
starts from the location [150, 125] at xy-coordinates, turns 90◦ at [450, 125], and ends at
[450, 325]) , BS is located at [320, 180]. Location information of UEs and BS could be found
in Table 4.4. Figure 4.4 shows the received signals from all UEs, each color represents re-
ceived signal from a different group of UEs at the BS. In other words, each color corresponds
to a cluster from which the UEs’ signal is reflected. Thus, by using ray-tracing model the rel-
evant clusters are geometrically found. Such results could further used in beamforming and
handover problems.

Figure 4.4: Received rays of all UEs at the BS.
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Ray number m Basis vector of offset angles αm

1,2 ±0.0447
3,4 ±0.1413
5,6 ±0.2492
7,8 ±0.3715

9,10 ±0.5129
11,12 ±0.6797
13,14 ±0.8844
15,16 ±1.1481
17,18 ±1.5195
19,20 ±2.1551

Table 4.2: Ray offset angles within a cluster, given for Root Mean Square Error (RMSE)
angle spread normalized to 1

Parameter Value Parameter Value
Pathloss at 1 m 61.4 dB Reflection loss 0-15.5 dB
UE TX power 23 dBm BS noise power -86 dB
BS antenna gain 0 or 2 UE antenna gain 1
Bandwidth 200 MHz OFDM subcarriers 256
BS antenna 64 ULA UE antenna 8 ULA
BS array gain 18 dB UE array gain 8 dB
Noise figure 6 dB Noise power -174 dBm
Num. of subrays/cluster 5 Max. num. of bounces 5
Max. num. of multipaths 10 Intra cluster mean delay 10 ns

Table 4.3: Simulation settings [55]

BS/UE BS location UEs’ starting point UEs’ turning point UEs’ ending point
xy coordinate m [320, 180] [150, 125] [450, 125] [450, 325]

Table 4.4: Locations of UEs and BS of Figure 4.4
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5. System Performance Evaluation

We are interested in deducing whether two users in a cellular system are at nearby physical
locations from measuring similarity of their covariance matrices at a base station. This
requires, first of all, a spatially consistent channel model. Even if a consistent model is
available, there are challenges in MIMO mm-Wave channels, as the semi-optical nature of
mm-Wave radio propagation gives rise to non-Kronecker correlation.

5.1. QuadRiGa channel generation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to estimate the channel at the BS from a UE transmission, the UEs may transmit,
e.g., a known pilot sequence x(t) of dimension r weighted by a beam matrix W = [w1, ... , wr ].
Depending on the UE hardware architecture, W may be transmitted with analog or fully digital
beams. The selection of W can be expressed as W = Ω

(
{H(t)}t

)
, where Ω is a function

which takes the instantaneous channel state, or the measured covariance information as an
input, and gives a precoder as the output, normalized as Tr(WHW) = 1. We assume that
the pilot vector is transmitted well within channel coherence time. The received signal vector
y(t) ∈ CM×1 at the BS is given

y(t) = H(t)Wx(t) + z(t), (5.1)

where z(t) ∈ CM×1 is the additive Gaussian noise with zero-mean. The BS may have a
fully digital, or hybrid beamforming architecture. If the BS is fully digital, it may estimate
H(t)W ∈ CM×r from the pilot transmission. In a hybrid architecture, the BS will not be able
to individually measure the received signal at different antennas. However, if similar mea-
surements are performed with multiple different analog Rx-beams, the BS will be able to
reconstruct the full M-dimensional channel from the knowledge of the measurements, and
the dictionary of analog beams used for the measurements [9]. Accordingly, it is reasonable
to assume that the BS can estimate H(t)W with reasonable accuracy, if a sufficiently long
pilot sequence is used, irrespective of the BS array architecture.
The non-Kronecker covariance structure of mm-Wave channels of the equation (2.4) implies
that care has to be taken when determining the signal covariances QUE , if similarity of user
locations is to be deduced from the covariance matrices. If transmissions from different
UEs in the same large scale fading environment are to be identified to come from nearby
locations, a coordinated principle for selecting transmission covariances QUE is needed.
We consider the problem of designing the precoder selection function Ω, aiming to preserve
spatial consistency of a set U of UEs moving in a radio environment characterized by the
same large scale parameters and scatterers. The spatial consistency of a pair of UEs u, u′ ∈
U in the radio environment can be measured, e.g., by the dCMD

(
Ru, Ru′

)
, where Ru = Ru[Ω]

is the estimated covariance of UE u at the BS, when precoder selection principle Ω is used.
For a Kronecker channel model, the CMD would not depend on W at all, while for non-
Kronecker channel models it does depend. Thus we will have to address the selection of
Ω.
The precoder design problem can be formulated based on CMD as:

min
Ω

∑
u 6=u′

dCMD
(
Ru, Ru′

)
. (5.2)
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Solving (5.2) is not analytically tractable. We consider two families for determining Ω; UE-
side covariance based and instantaneous UE CSI based beamformers. For covariance
based UE pilot beamformers, V largest eigenvalue eigenvectors are considered. For instan-
taneous CSI based beamformers, V largest singular value singular vectors are considered.
The effect of the rank V on the average pairwise CMD for covariance/instantaneous based
UE pilot beams is evaluated using simulations in the next section.

5.2. QuadRiGa Settings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As an example, we consider a 3GPP 38.901-UMaNLoS mm-Wave radio environment with
28 GHz carrier frequency, 200 MHZ bandwidth, 256 subcarriers and 20 clusters each with
20 rays. We consider the scenario I with a 32-antenna BS placed at [0, 0, 10] m and 20
UEs, each having 8 antennas. UE 0 is located 50 m from the BS and UEs u = 1, ... , 19
are on a straight line separated by a distance of 1 m from each other. To create covariance
estimates, 50 spatial fast fading samples are generated for each UE within a uniform dis-
tance of 1 m. Noiseless covariance estimation is assumed. The CSI is generated using the
QuaDRiGa channel simulator [51]. Figure 5.1, shows the CMD of UE 1 with respect to the
other users for different ranks of the covariance based UE pilot beamformer. The CMD re-
duces with increasing rank, as expected. Thus, spatial consistency (similarity/dissimilarity)
can be captured more accurately using a UE pilot beamformer with a higher rank.
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Figure 5.1: The CMD as a function of the distance between UE 1 and u for different ranks of
the covariance based UE pilot beamformer in a noiseless scenario.

In the scenario II, 20 static UEs are evenly located on the circumference of a space of radius
5 m and are indexed from 1-20 in counter clock wise manner as well as the BS is at origin
[0, 0], see Figure 5.2. Like in scenario I, all performance metrics (i.e. the power, delay,
AoA, EoA, AoD, and EoD profiles of MPCs of UEs) are considered, showing the spatial
consistency is captured. Each cluster parameter (power, delay, AoA, EoA, AoD, and EoD
profile) evolves continuously and smoothly as it can be observed in Figure 5.3. Figure 5.3a
shows power and delay profiles where nearby users have almost the same received power.
Figure 5.3b shows that the AoD, and EoD profiles change smoothly for different clusters as
a function of UE index.
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Figure 5.2: Static UEs on the circumference of a circle.

(a) Top: Power profile of MPCs of UEs. Bottom:
Delay profile of MPCs of UEs.

(b) Top: AoD profile of MPCs of UEs. Bottom: EoD
profile of MPCs of UEs.

Figure 5.3: MPC characteristics of scenario II as a function of UE index.

In retrospect to the scenario I, different similarity measures has been applied to the covari-
ance matrix of UE at first track sample and other parts of the track. Figure 5.4a shows the
CMD and chordal distance as a function of track sample. The variations of the CMD and
chordal distances as a function of track sample are not smooth. Figure 5.4b shows the CMD
and chordal distance as a function of UE index for scenario II. UE 1 is the reference point for
measurements. Likewise, variations of the CMD and chordal distances are not smooth and
it is due to the fact that, the obtained results were based on a single spatial sample. Hence,
it is difficult to reveal the spatial consistency of the environment. However, the spatial con-
sistency is well captured in this scenario where small chordal and CMD distance is obvious
for UEs in vicinity of the UE 1. It worth mentioning, chordal distance is not a normalized
distance measure and the value range is a function of the power of channel coefficients.
To capture the spatial consistency (i.e., smooth behavior) of the measurements at the BS
based on covariance matrices we consider the long-term average covariance matrix (aver-
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Figure 5.4: Covariance matrix measures. Left: Scenario I. Right: Scenario II.

aged over several spatial samples) and then compute the CMD and chordal distances. In
addition, covariance and instantaneous based pilot beamformer are considered to deal with
non-Kronecker mm-Wave channel in scenario III. Figure 5.5 shows a sample environment
where 20 UEs are scattered in an area of 10× 10. We create 20 environments. An environ-
ment is determined by a set of AoAs and AoDs. Each UE moves in a random direction for
1 m. The movement of UE 1 is shown. The number of snapshots is 100 and the BS is at
xy-coordinates [0, 0] m. The UEs may transmit either with estimated covariance matrix, 1-8
eigenvectors, or instantaneous right singular vectors, 1-8 of them. A covariance matrix is es-
timated for each of the UEs in the environment Here, we have adopted the mean CMD of the
environment as a measure of spatial consistency. The mean CMD between the estimated
covariance for each method is computed in each environment.

Figure 5.5: A population of 20 UEs.

Figure 5.6 shows the average CMD by considering instantaneous and covariance based
pilot beamformer of different ranks for different MPCs (rank represent the number of ordered
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Eigen vectors or singular vectors). The CMD value is affected by the number of MPCs in
the environment. It reveals that, there is an optimum rank. Increasing the rank beyond this
increases the noise contribution more than improves the covariance similarity. The reason
for this is that with increasing rank, the overall received signal power is reduced, such that
the noise component in the covariance estimate increases.
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(c) Environment with 5 MPCs.

Figure 5.6: Average CMD as a function of beamformer rank.

Figure 5.7 shows how the average CMD value is effected by the number of antennas in
the same environment with 20 MPCs. The number of antennas has changed from a 32
antenna ULA to 16 and 8 antenna ULA. The size of the environment also has an effect on
the average pairwise CMD. Figure 5.8 shows how CMD value changes in a smaller area of
5 × 5 as compared to a larger area with the same number of MPCs (20 MPCs). From all
observations it is concluded that in order to have spatial consistent measurements the rank
of the covariance and instantaneous based pilot beam former needed to be designed.
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(a) 16 antennas at BS.
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(b) 8 antennas at BS.

Figure 5.7: Average CMD as a function of beamformer rank. Environment contains 20
MPCs.

In scenario IV and V, moving of UEs on straight line and their random movement in the
environment is considered and the effect of that on the average CMD has been shown.
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Figure 5.8: Average CMD as a function of beamformer rank. The environment size is 5×5.

Figure 5.9a shows UEs are moving on straight lines of 5 m long. A different antenna orien-
tation for each UE is considered and all UEs pass the center point. To create covariance
estimates,100 time domain snapshots are generated for each UE. Figure 5.10 shows the
average CMD by considering instantaneous and covariance based pilot beamformer of dif-
ferent ranks. Figure 5.10a depicts the average CMD value for an environment of diameter
5 m with 20 MPCs whereas Figure 5.10b exhibits the CMD value for an environment of di-
ameter 1 m with the same number of MPCs. The average CMD can be used to measure
the spatial consistency of the environment as indicated by the small values of the CMD as
shown in Figure 5.10 for UEs passing through the same center point.
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Figure 5.9: Movement of a population of 20 UEs. Left: Scenario IV. Right: Scenario V.

In scenario V, UEs are moving on random directions. Different antenna orientation is consid-
ered at each track sample and this scenario is constructed based on random samples from
the track positions of the whole population as shown in Figure 5.9b. The average CMD value
by considering instantaneous and covariance based pilot beamformer of different ranks for
environments of 5 m and 1 m diameter are shown in Figure 5.11a and 5.11b respectively. If
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Figure 5.10: The average pairwise CMD for the movement passing the center point.

we have the chance to sample the environment randomly with different antenna orientations,
the average CMD computed based on covariance based pilot beam former has the capabil-
ity to reveal the spatial consistency of the environment. Figure 5.11b shows the CMD based
on instantaneous pilot beam former with rank 1 gives better CMD compared to higher ranks.
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Figure 5.11: The average pairwise CMD for random movement.

5.3. Ray-Tracing Channel Generation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to investigate performance of the ray-tracing simulator, we used the ray-tracing
channel simulator to model channels between UEs and BSs. Then, we consider a machine
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learning algorithm to predict the SNR of a user transmission at neighboring base stations in
a mMIMO cellular system. This information is needed for HO decisions for mobile users. For
SNR prediction, only uplink channel characteristics of users, measured in a serving cell, are
used.
Large-scale effects of wireless channel are caused by reflection, diffraction, and scattering of
the physical environment, whereas small-scale effects are caused by multipath propagation
and related destructive/constructive addition of signal components. The CC is based on the
assumption that statistical properties of MIMO channel vary relatively slowly across space,
on a length-scale related to the macroscopic distances between scatterers in the channel,
not on the small fading length-scale of wavelengths. In this regards, the CSI covariance
matrix can be used to capture large-scale effects of the wireless channel based on the
assumption that there is a continuous mapping from the spatial location of a UE to the
covariance CSI.
CC starts by processing the CSI covariance matrix into suitable channel features that cap-
ture large-scale properties of the wireless channel. CC then proceeds by using a set of
collected features for a set of UEs seen by a BS to learn a dissimilarity matrix. Different
approaches can used to select the channel features and then computing the dissimilarity
matrix (see, [2, 4]). However, we select the feature vector based on multi-path components.
These multipath component parameters are estimated from the covariance matrix using the
multiple-signal-classification (MUSIC) algorithm. Next, MPCs are clustered. The dissimilar-
ity between two UEs is based on identifying MPCs in their feature vectors that are similar [5].
Thus, dissimilarity coefficient between a pair of UEs is computed taking into consideration
MPCs of the UEs that are in the same cluster. Multipoint channel charting utilizes the differ-
ent views of the spatially distributed BSs by fusing the BS-specific dissimilarity matrices into
a global dissimilarity matrix [4].
Radio maps can be utilized for RRM functionalities. To construct radio maps, either the
physical or the logical location of the UEs in the radio environment and the corresponding
CSIs are needed. The physical location can be obtained either by a Global Navigation Satel-
lite System (GNSS) such as GPS. CC can be used with a single BS, however, using more
BSs improves the CC accuracy. CC has the advantage of replacing the timely and costly
measurement campaign in GNSS fingerprinting based algorithms by heavily processing ML
algorithms (i.e., unsupervised learning plays a key role of mapping radio features to logical
locations and preserving neighborhood relations) at the BSs, which has the advantage of
being able to be applied for large scale areas and in an automated manner when the radio
environment changes. The back-haul cost of CC is less than the back-haul of GNSS finger-
printing, since the location information is not transmitted. To use a channel chart for RRM
functionalities, new UEs can be added to an existing CC based on their radio frequency CSI
(i.e., covariance matrix) as in [57]. Then, from a CSI measurement of a new UE, possible
CSI states can be predicted, by comparing to the CSI of nearby positions in the chart.
The HO process is a core element of cellular networks to support user mobility. HO manage-
ment has always been a central research area in the context of cellular networks (see [58]
for GSM/CDMA). HO is the process of changing the UE serving BS with mobility such that
the best BS is always selected. A simple rule for selecting the best BS is based on the av-
erage Received Signal Strength (RSS) level, i.e., the UE changes its association if another
BS provides a higher RSS than the serving BS, which may happen when the user moves
away from the serving BS towards another BS.
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Figure 5.12: The principle of Channel Charting based Network Controlled handover.

Path losses at mm-Wave bands can be overcome by the use of mMIMO systems. In
mm-Wave cellular systems, the BS transmits multiple narrow beams towards the UE. Beam-
formed transmissions over different beams (up to 64 beams) are allowed in 5G-NR for
mm-Wave frequencies. In this architecture, a new handover (beam switching) within the
same BS or among different BSs can occur. We consider that the UE has one transmitting
antenna, the UE pilot signal is received at the serving BS and used for SNR predication at
neighboring BSs based on CC for handover management.
Channel Chart-based-Network-Centric-Handover (CCNCH) is based on the large scale ra-
dio features of a UE, measured at the serving BS. The serving BS has a channel chart,
constructed offline, where the CC locations are annotated with measured SNR values of
the neighboring BSs, and a prediction algorithm to predict the SNR of a neighboring BS.
During online operation, the annotated CC, and the SNR prediction algorithm are used for
making HO decisions for a new population of users. CCNCH is a distributed algorithm that
is implemented at each BS. It is illustrated in Figure 5.12.
The input of CCNCH training is a set of measurements from UEs, collected in a short enough
time scale such that the UE is in the location from the point of view of large scale channel
characteristics. All BSs in the network that are able to detect the UE, measure the UE chan-
nels, and construct a received SNR from the UE. These measurements represents samples
from the continuous function of radio signals from the s-dimensional spatial coverage area
of the network to radio feature space.
Offline training consists of three phases: channel charting, annotation, and training of SNR
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map. In the online phase, the developed SNR mapping functions will be used by a BS (e.g.
BS s) to predict the neighbor-cell SNRs of a mobile user that it serves. The prediction is
solely based on received signal measurements at the BS s.
Based on the annotated channel chart C(t)

s , BS s should find the function g(t)
s that predicts

the SNR γt at target cell t for a transmission at any CC location and received SNR γs,m. We
shall use machine learning methods to find this function. We consider dB-valued SNRs both
at input and output, to have the dynamic range of the variables under control, and take the
cost function to be minimized in training to be prediction Mean Squared Error (MSE). We
consider three learning algorithms for prediction; GPR, a Support Vector Machine (SVM),
and NN.
We compare GPR and SVM to a NN based regression function. For this, we consider a
fully connected neural network, with three real-valued inputs, a number of hidden layers,
and one real-valued output, providing the SNR prediction. For the learning process, forward
and backward propagation phases are applied. First, weights are initialized randomly. In
the forward phase, the input is fed to the network through input neurons, and is propagated
across the hidden layers until the output layer. The error between the predicted output and
the given output from the input data is calculated. Then, in the backward phase, based on
the error, we use the Levenberg-Marquardt method to adjust the weights and biases so that
the output MSE is minimized. We split the data set randomly into three sets; 80% is used
for training, 10% for validation and 10% for testing. To avoid overfitting, during training, the
performance is tested against the validation set. Once the validation error is larger than the
training error for six consecutive iterations, we backtrack to the weights that provided the
smallest validation error. Prediction results are then provided for the testing set.
The prediction accuracy of a NN depends on the weight initialization; depending on initializa-
tion, the NN may converge to different local optima. To mitigate this, we use several random
initializations to generate multiple NN predictors. The NN that provides the best performance
on the validation set is selected.

5.4. Ray-Tracing Setting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An urban outdoor multi-cell mm-Wave scenario is considered as discussed in [2]. The sys-
tem parameters are shown in Table 5.1. A ray-tracing channel model is used to generate
multi-path channels. The UE locations are randomly generated on the streets of a Manhattan
grid. The CSI of the UEs are estimated at multiple BSs.

Parameter Value Parameter Value
Carrier frequency 28 GHz Bandwidth 256 MHz
UE TX power 23 dBm BS noise power −86 dBm

Table 5.1: Simulation parameters [2]

First, to get a gist of CCNCH in a multicellular environment, we consider a scenario with 10
BSs, 6 streets and 5000 UEs. A channel chart based on Laplacian eigenmaps is generated
as shown in Figure 5.13. Each UE in this figure is colored based on its best BS. For
comparison, the ground truth location of UEs and BSs are also shown.
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Figure 5.13: Channel charting for a 10 BS network. Left: CC. Right: Ground truth spatial
location in Manhattan Grid. Each color is associated to UEs that are served by a BS. BS
locations indicated by numeric labeled circles.

For each of the BSs s = 1, ... , 10, we construct CC groups G(t)
s for handover target cells t ∈ Ts

so that G(t)
s consists of the UEs for which the two best BSs are s and t in any order. The SNR

mapping function to predict the target BS t in each group G(t)
s s = 1, ... , 10 and t ∈ Ts is then

created. NN, GPR and SVM predictors are used.
For GPR, we select the exponential kernel, since it has the best performance compared to
other kernels functions for the data set. A NN with three hidden layers with 10 neurons each
is used.
The RMSE of the predictors are measured. The standard deviation of the RMSEs of the
predictors generated for different (s, t) pairs is also measured. Both of these are measured in
dBs. In Table 5.2, a comparison of the best NN to GPR and SVM is shown. NN outperforms
the other regression methods in terms of RMSE.

Algorithm NN GPR SVM
RMSE 1.41 1.53 1.68
std (RMSE) 0.26 0.16 0.20

Table 5.2: Performance comparison for the whole network; a data set of 5000 users in the
10 cells

In the full network simulation, the data set for learning the SNR prediction function was rather
limited. For an ordered pair (s, t) on average some 550 UE locations are sampled. Already
with this limited training set, NN outperforms the other predictors. To further clarify the merits
of the considered predictors, we construct a larger data set for a pair of cells. We drop a
large number of UEs in the street where BSs 1 and 2 are located, and select at random a set
of 7000 UE positions that belong to G(2)

1 . Channel charting is performed based on the CSI of
these UEs, as measured at BS 1, and the CC is annotated with the SNRs of BSs 1 and 2.
A sample of BS s = 1 predicting the SNR of t = 2 is depicted in Figures 5.14 and Figure 5.15.
Figure 5.14 shows the ground truth and predicted BS 2 SNR values in dB, plotted against the
ground truth locations. Figure 5.15, in contrast, shows the same ground truth and predicted
SNR values, plotted against the CC locations z ∈ C(t)

s , which are used as input for predictor
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Figure 5.14: Target BS SNR as function of ground truth location. BS 1 & 2 locations marked.
Left: Ground truth SNR. Right: Predicted SNR.

training. In addition, an approximate cell boundary is drawn, to sketch the place where BS 2
becomes better than BS 1.
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Figure 5.15: Target BS SNR as function of CC location (arbitrary length scale). Left: Ground
truth SNR. Right: Predicted SNR. Approximative cell boundary drawn.

For HO, between cells s and t , the crucial variable to control is the ratio of the SNRs γs

and γt , or their dB-domain difference γs − γt . Figure 5.16 plots the predicted SNR difference
against the ground truth for s = 1, t = 2, with prediction based on GPR. Similarly, Figure 5.16
shows the predicted SNR difference based on a NN with structure [10 10 10], against the
ground truth.
In addition, the 95% confidence interval for the SNR difference prediction using GPR is
plotted in Figure 5.17. Interestingly, the edge of NN against GPR seems to arise in the
domain where γ1 is comparable or larger than γ2, while for γ2 much larger than γ1, the
algorithms perform similarly. This is encouraging for the prospect of using an NN-based
SNR predictor for CCNCH, as the ideal handover location would be γ2 = γ1, and this border
would be approached from a direction where γ1 > γ2.
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Figure 5.16: Predicted γ1,k − γ2,k value vs ground truth for Right: NN predictor. Left: GPR
predictor.

-20 -15 -10 -5 0 5 10 15

True value (dB)

-20

-15

-10

-5

0

5

10

15

20

P
re

d
ic

te
d
 v

a
lu

e
 (

d
B

)

Figure 5.17: Upper and lower bounds of the 95% confidence intervals for predicted value of
γ1,k − γ2,k vs. ground truth using GPR predictor.

Dissemination Level: Public. Page 45



H2020 Grant Agreement Number: 813999
Document ID: WP4/D4.1

6. Conclusion

This deliverable is focused on mm-Wave channel models for 5G and B5G communication
systems. Since channel models have a large impact on various aspects of wireless systems
ranging from system design to performance analysis, it is critical to develop accurate chan-
nel simulators to generate realistic channel responses especially to be used with machine
learning algorithms. In this sense, we have presented the role and importance of synthetic
data generation in wireless communications. We presented different applications of machine
learning to wireless communication that need large synthetic data sets, and characterized
their requirements. CC, which is a dimensional reduction of multiuser radio channel fea-
tures measured at the serving BS, can be applied for radio resource management in future
wireless communication systems. In the context of collaborative machine learning, simula-
tors and statistical models represent efficient tools to fabricate training data sets, allowing to
avoid burdensome and potentially dangerous real world data collection procedures. Versatil-
ity of synthetic data generation procedures has been showcased in the context of distributed
power control where the performance of data-driven policies can be easily analyzed under
different channel state qualities at transmitters. In the context of Large Intelligent Surfaces,
ray-tracing arises as a powerful tool to model the radio propagation environment. In general,
it is cumbersome to obtain an analytical solution for the EM field in a realistic scenario. Then,
the purpose of ray-tracing propagation modeling is to acquire an estimation of the field/signal
strengths in a realistic manner, taking into account physical phenomena such as scattering
and diffraction. In this way, ray-tracing is a useful procedure for generating synthetic data
that captures both the small and large scale effects of the radio propagation environment
as well as the spatial consistency. Besides the potential for high throughput and efficient
multiplexing of wireless links, a LIS can offer a high-resolution rendering of the propaga-
tion environment. This is because, in an indoor setting, it can be placed in proximity to the
sensed phenomena, while the high resolution is offered by densely spaced tiny antennas
deployed over a large area.
General frameworks of radio channel models were discussed. Different MIMO channel
modeling approaches have been detailed for ease of understanding. The key differences
between sub 6 GHz and mm-Wave frequencies such as pathloss, penetration loss, atten-
uation, channel sparsity, and spatial consistency were explained. Spatial consistency in
mm-Wave channel models is an important characteristic the disregarding of which hinders
reliable investigation of ,e.g., machine learning tasks which consider channel prediction. The
problem of designing spatial consistent large scale measurements at the base station was
presented.
Two channel simulators, the QuaDRiGa a ray-tracing based model were presented. Their
underlying channel models, layout and system specification, outputs, and applications were
discussed. For the QuaDRiGa simulator, spatial consistency of the generated channels in
mm-Wave band was investigated and evaluated using different measures. We have ana-
lyzed the covariance matrix measured at the BS from the transmission of UE pilot beam-
formers in terms of the contributions from MPC clusters in mm-Wave channels. As a con-
sequence of MPC clustering, channel covariance has a non-Kronecker structure, and the
covariance matrix estimated across time depends on the movement direction. Based on
this, we have formulated the UE pilot beamformer selection problem as an optimization prob-
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lem aiming to preserve spatial consistency of a set of UEs moving in the same large-scale
radio environment. We have evaluated the average pairwise CMD for covariance/instanta-
neous CSI based UE pilot beamformers with different ranks. Simulation results using the
QuaDRiGa simulator and 3GPP model have showed that in the absence of noise, the aver-
age pairwise CMD distance decreases uniformly with rank.
When discussing the ray-tracing simulator, the underlying mathematical channel model was
presented. Sub-ray generation following 3GPP procedures is detailed. The mm-Wave chan-
nel model for an urban area (Manhattan grid) is parameterized. We have shown that the
relevant clusters in an environment could be geometrically found using ray-tracing chan-
nel model. The resulting channel model is useful in assessing the feasibility of mm-Wave
communications in urban areas. To determine this, we used the generated channels in a
handover detection scenario. We have considered an algorithm for learning the SNR of a
user in a neighboring cell from the signal received in a serving cell. The learning is based
on a channel chart. A handover algorithm can be designed based on the predicted SNR
of the target BS. Three different regression learners have been considered for SNR pre-
diction; Gaussian Process Regression, Support Vector Machines, and Neural Networks.
Performance of each learner is evaluated based on RMSE.
Based on the discussion of the channel models, and the evaluations, we conclude that
both Quadriga, and the ray-tracing simulator, can be used as channel modeling tools when
considering wireless machine learning tasks requiring spatial consistency, as , for example,
in the problems addressed in sections 1.1 and 1.3 in this report, which will be investigated
in this WP.
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